Browse/search for people

Publication - Professor Dek Woolfson

    Local and macroscopic electrostatic interactions in single α-helices

    Citation

    Baker, EG, Bartlett, GJ, Crump, MP, Sessions, RB, Linden, N, Faul, CFJ & Woolfson, DN, 2015, ‘Local and macroscopic electrostatic interactions in single α-helices’. Nature Chemical Biology, vol 11., pp. 221-228

    Abstract

    The noncovalent forces that stabilize protein structures are not fully understood. One way to address this is to study equilibria between unfolded states and α-helices in peptides. Electrostatic forces - which include interactions between side chains, the backbone and side chains, and side chains and the helix macrodipole - are believed to contribute to these equilibria. Here we probe these interactions experimentally using designed peptides. We find that both terminal backbone-side chain and certain side chain-side chain interactions (which include both local effects between proximal charges and interatomic contacts) contribute much more to helix stability than side chain-helix macrodipole electrostatics, which are believed to operate at larger distances. This has implications for current descriptions of helix stability, the understanding of protein folding and the refinement of force fields for biomolecular modeling and simulations. In addition, this study sheds light on the stability of rod-like structures formed by single α-helices, which are common in natural proteins such as non-muscle myosins.

    Full details in the University publications repository