Dr Gordon Inglis

Image of Gordon Inglis

Senior Research Associate

I use the geological record to understand large-scale Earth System processes in a warmer world. I have expertise in the development and application of biomarker-based proxies and have used this to reconstruct temperature, hydrological and biogeochemical change over the last 120 million years.

Background

I graduated from the University of Glasgow in 2011 with a 1st Class degree in Earth Science. My undergraduate dissertation was completed within the Glasgow Molecular Organic Geochemistry Laboratory under the supervision of Dr. James Bendle. My project used sediments from IODP Expedition 318 to reconstruct the terrestrial environment on Antarctica during the Early Eocene (c. 50 million years ago).

My PhD (2011-2015) was completed within the Organic Geochemistry Unit at the University of Bristol under the supervision of Professor Rich Pancost. My thesis used organic-based temperature proxies (e.g. refs. 3, 6) to provide unique insights into Eocene climate change (Title: ‘From Greenhouse to Icehouse: reconstructing temperature change during the Eocene using a biomarker approach’). I also explored the impact of higher temperatures upon the wider Earth System (e.g. refs. 4, 5, 13).

During my PDRA (2015-2018), I developed a new geochemical framework to track changes in wetland methane cycling during the geological record. Using samples from modern wetlands, I demonstrated that plant lipids (specifically, mid-chain n-alkanes) and bacterial lipids (specifically, ≤ C30 hopanoids) are suitable candidates for tracking changes in wetland CHcycling and could provide qualitative insights into terrestrial CHcycling over the Cenozoic (Inglis et al. in review). I also demonstrated that the distribution of hopanoids in modern wetlands is influenced by acidity. This enabled the development of a wetland-specific pH proxy which can be applied to ancient settings (ref. 19).

I am currently employed as a senior PDRA (2019-2021) on the NERC-funded SWEET project (see below)

Research

Accurately characterising Earth’s climate during the super-warm Early Eocene Climatic Optimum (EECO; 49.4 to 53.3 Ma), for both model-data comparison and understanding the relevant mechanisms that led to the warmth, requires a wide spatial coverage of palaeo-data. The tetraether index of 86 carbons (TEX86) paleothermometer has been widely used to reconstruct SST during the Eocene. However, TEX86 SST estimates are typically restricted to a few, well-sampled regions (e.g. SW Pacific), although some recent progress has been made(1). In this project, I will develop new TEX­86 estimates during the EECO at unparalled spatial resolution and compare my results alongside other SST proxies (e.g. Mg/Ca, δ18O). Ultimately, this data will be assessed alongside the first ever IPCC AR6-class model (UKESM) simulations of a greenhouse climate. This integrated model-data approach will then be used to understand the causes of EECO warmth.

[1] Hollis et al (2018), Geoscientific Model Development Discussion, 1-98 

Publications

2019

21. Hollis, C. J., Dunkley Jones, T., Anagnostou, E., Bijl, P. K., Cramwinckel, M. J., Cui, Y., Dickens, G. R., Edgar, K. M., Eley, Y., Evans, D., Foster, G. L., Frieling, J., Inglis, G. N., Kennedy, E. M., Kozdon, R., Lauretano, V., Lear, C. H., Littler, K., Meckler, N., Naafs, B. D. A., Pälike, H., Pancost, R. D., Pearson, P., Royer, D. L., Salzmann, U., Schubert, B., Seebeck, H., Sluijs, A., Speijer, R., Stassen, P., Tierney, J., Tripati, A., Wade, B., Westerhold, T., Witkowski, C., Zachos, J. C., Zhang, Y. G., Huber, M., and Lunt, D. J (2019) The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database. Geoscientific Model Development Discussion. 1-98

20. Duncan, B., McKay, R., Bendle, J. Naish, T., Inglis, G.N, Moossen, H., Levy, R., Ventura, T., Lewis, A., Chamberlain, B. and Walker. C. Lipid biomarker distributions in Oligocene and Miocene sediments from the Ross Sea region, Antarctica: Implications for use of biomarker proxies in glacially influenced setting. In revision. Palaeogeography, Palaeoclimatology, Palaeoecology.. 71-89

2018

19. Inglis, G.N., Naafs, B.D.A., and Pancost, R.D. Distribution of geohopanoids in peat: implications for the use of hopanoid-based proxies in natural archives. Geochimica et Cosmochimica Acta. 224. 249-261. 

18.  Naafs, B.D.A., Rohrssen, M, Inglis, G.N., Lahteenoja., Feakins, S., Collinson, M.E., Kennedy, E.M., Singh, P.K., Singh, M.P., Lunt, D.J. and Pancost, R.D. High temperatures in the terrestrial mid-latitudes during the early Paleogene. Nature Geoscience. 11. 766-771

17. Lengger, S., Sutton, P.A., Rowland, S.J., Hurley, S.J., Pearson, A., Naafs, B.D.A., Inglis, G.N and Pancost, R.D. Archael and bacterial glycerol dialkyl glycerol tetraether (GDGT) lipids in environmental samples by high temperature-gas chromatography with flame ionisation and time-of-flight mass spectrometry detection. Organic Geochemistry. 121, 10-21.

16.  Naafs, B.D.A., McCormack, D., Inglis, G.N and Pancost, R.D. The influence of temperature and pH on the abundance of archaeal and bacterial H-GDGTs in terrestrial settings. Geochimica et Cosmochimica Acta. 227. 156-170

2017

15. Inglis, G.N., Collinson­, M.E., Riegel, W., Wilde, V., Farnsworth, A., Lunt, D., Valdes, P., Robson, B., Scott, A., Lenz, O., Naafs, B.DA and Pancost, R.D (2017)  Early Paleogene continental temperature change in western-central Europe. Earth and Planetary Science Letters. 460, 86-96

14. Chaves-Torres, L., Melbourne, L.A., Hernandez-Sanchez, M., Inglis, G.N. and Pancost, R.D. Insoluble prokaryotic membrane lipids in continental shelf sediments offshore Cape Town: implications for organic matter preservation. Marine Chemistry. 197, 38-51

13. Carmichael, M.J., Inglis, G.N., Badger, M.P.S., Naafs, B.D.A., Behrooz, L., Remmelzwaal, S., Montiero, F., Rohrssen, M., Farnsworth, A., Buss, H., Dickson, A.J., Valdes, P.J., Lunt, D.J and Pancost, R.D. Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum. Global and Planetary Change. 157, 114-138

12. O’Brien, C., Robinson, S.A., Pancost, R.D., Sinninghe Damsté, J.S. Schouten, S., Lunt, D.J., Alsenz, H., Bornemann, A., Botini, C., Brassell, S.C., Farnsworth, A., Forster, A., Huber, B.T., Inglis, G.N., Jenkyns, H.C., Linnert, C., Littler, K., Markwick, P., McAnena, A., Mutterlose, J., Sluijs, A., van Helmond, N.A.G.M., Vellekoop, J., Wagner, T and Wrobell, N.E. Proxy data constraints on Cretaceous sea-surface temperature evolution. Earth Science Reviews. 172, 224-247

11. Naafs, B.D.A., Gallego-Sala, A., Inglis, G.N. and Pancost, R.D. Refining the global branched glycerol dialkyl glycerol tetraether (brGDGT) soil temperature calibration. Organic Geochemistry. 106, 48-56

10. Naafs, B.D.A., Inglis, G.N., et al. Branched GDGT distributions in peats: introducing global peat-specific temperature and pH proxies. Geochemica et Cosmochimica Acta. 208, 285-301

9. Lunt, D.J., Huber, M., Anagnostou, E., Baatsen, M., Caballero, R., DeConto, R., Dijkstra, H., Donnadieu, Y., Evans, D., Feng, R., Foster, G., Gasson, E., von der Heydt, A., Hollis, C., Inglis, G.N., Jones, S., Kiehl, J., Kirtland Turner, S., Korty, R., Kozdon, R., Krishnan, S., Ladant, J-B., Langebroek, P., Lear, C., LeGrande, A., Littler, K., Markwick, P., Otto-Bliesner, Pearson, P., Poulsen, C., Salzmann, U., Shields, C., Snell, K., Starz, M., Super, J., Tabor, C., Tierney, J., Tourte, G., Tripati, A., Upchurch, G., Wade, B., Wing, S., Winguth, A., Wright, N., Zachos, J and Zeebe, R (2017) DeepMIP: experimental design for model simulations of the EECO, PETM, and pre-PETM. Geoscientific Model Development Discussion

8. Inglis, G.N., Pancost, R.D and Harrison, T.G. (2017) Reconstructing Past Climates Using Molecular Fossils. Chemistry Review. 26 (3)

2016

7. Talbot, H.M,. McClymont, E., Inglis, G.N., Evershed, R.P. and Pancost, R.D (2016) Origin and preservation of bacteriohopanepolyol and geohopanoid signatures in Sphagnum peat. Organic Geochemistry97, 95-110

6. Anagnostou, E., John, E., Edgar, K., Foster, G., Ridgwell, A., Inglis, G.N., Pancost, R.D., Lunt, D. and Pearson, P (2016) Atmospheric CO2 concentrations were the primary driver of early Cenozoic climate. Nature533, 380-384

5. Talbot, H.M., Bischoff, J., Inglis, G.N., Collinson, M.E. and Pancost, R.D (2016) Polyfunctionalised bio- and geohopanoids in the Eocene Cobham Lignite. Organic Geochemistry. 96, 77-92

2015

4. Inglis, G.N., Collinson, M.E., Riegel, W., Wilde, V., Robson, B and Pancost, R.D. (2015) Ecological and biogeochemical change in an early Paleogene peat-forming environment: linking biomarkers and palynology. Palaeogeography, Palaeoclimatology, Palaeoecology438, 245-255. DOI: 10.1016/j.palaeo.2015.08.001

3. Inglis, G.N., Farnsworth, A., Lunt, D., Foster, G.L., Hollis, C.J., Pagani, M., Jardine, P., Pearson, P.N., Markwick, P., Galsworthy, A., Raynham, A., Taylor, K.W.R and Pancost, R. D (2015) Descent towards the Icehouse: Eocene sea surface cooling inferred from GDGT distributions. Paleoceanography. 30, 1000-1020. DOI: 10.1002/2014PA002723

2014

2. Seki, O., Bendle, J., Harada, N., Kobayashi, M., Sawada, K., Inglis, G., Nagao, S., and Sakamoto, T., (2014) Assessment and calibration of TEX86 paleothermometry in the Sea of Okhotsk and sub-polar North Pacific region: implications for paleoceanography. Progress in Oceanography. 126, 254-266. DOI: 10.1016/j.pocean.2014.04.013

2013

1. Pancost, R.D., Taylor, K.W.R., Inglis, G., Kennedy, L., Handley, L., Hollis, C., Crouch, E., Pross, J., Huber, M., Schouten, S., Pearson, P., Morgans, H., and Raine, J (2013) Early Paleogene evolution of terrestrial climate in the SW Pacific, Southern New ZealandGeochemistry, Geophysics, Geosystems14, 5413-5429. DOI: 10.1002/2013GC004935

Further details of publications can be found in the University of Bristol publications system

Edit this page