R2MLwiN: A Package to Run MLwiN From Within R

Zhengzheng Zhang
University of Bristol

Richard M. A. Parker
University of Bristol

Christopher M. J. Charlton
University of Bristol

George Leckie
University of Bristol

William J. Browne
University of Bristol

Abstract

R2MLwiN is a new package designed to run the multilevel modeling software program MLwiN from within the R environment. It allows for a large range of models to be specified which take account of a multilevel structure, including continuous, binary, proportion, count, ordinal and nominal responses for data structures which are nested, cross-classified and/or exhibit multiple membership. Estimation is available via iterative generalised least squares (IGLS), which yields maximum likelihood estimates, and also via Markov chain Monte Carlo (MCMC) estimation for Bayesian inference. As well as employing MLwiN’s own MCMC engine, users can request that MLwiN write BUGS model, data and initial values statements for use with WinBUGS or OpenBUGS (which R2MLwiN automatically calls via rbugs), employing IGLS starting values from MLwiN. Users can also take advantage of MLwiN’s graphical user interface: for example to specify models and inspect plots via its interactive equations and graphics windows. R2MLwiN is supported by a large number of examples, reproducing all the analyses conducted in MLwiN’s IGLS and MCMC manuals.

Keywords: R2MLwiN, MLwiN, R, WinBUGS, OpenBUGS, multilevel model, random effects model, mixed model, hierarchical linear model, clustered data, maximum likelihood estimation, Markov chain Monte Carlo estimation.

1. Introduction
In research fields as diverse as education, economics, medicine, psychology, and biology, it is commonplace to encounter data which are clustered: for example, exam results from many students across a smaller number of schools in a cross-sectional study, or clinical measurements taken repeatedly from the same individuals in a longitudinal study. Multilevel modeling is an efficient way to model such data; it accounts for the lack of independence in clustered data, and adjusts the standard errors accordingly, whilst also opening avenues of enquiry to which more traditional multiple regression techniques are ill-suited, such as investigating group effects (e.g., Goldstein 2010; Pinheiro and Bates 2000; Raudenbush and Bryk 2002). Multilevel models (a.k.a. mixed models, random effects models, hierarchical models, etc.) achieve this by treating the units at each level (in the above examples: students and schools, measurement occasion and individuals, respectively), as a random sample from a larger population with an assumed distribution, partitioning the residual variance between levels.

1.1. MLwiN software

The statistical software package MLwiN (Rasbash et al. 2009) is designed to allow researchers to specify, estimate and interpret multilevel models. It was first released, as a Windows-based program, in 1998, and is still actively-developed by the Centre for Multilevel Modelling (now at the University of Bristol). With an estimated 18,000 users worldwide, the current version (v2.32, at time of writing) was released in January 2015, and native versions of the MLwiN engine for Mac OS X and Linux have been recently made available. MLwiN allows for a variety of response types to be modeled, including continuous, binary, proportion, count, ordinal, nominal, and multivariate combinations (i.e., simultaneous equations); estimation is available via iterative generalised least squares (IGLS) (Goldstein 1986), which yields maximum likelihood estimates, and also via Markov chain Monte Carlo (MCMC) estimation for Bayesian inference (Browne 2012). It supports a range of data structures, including nested, cross-classified (i.e., crossed random effects) and/or multiple membership structures (Browne et al. 2001). Other features include the fitting of complex level 1 variance (heteroskedastic) models, multilevel factor analysis (MCMC only; with multiple - correlated or uncorrelated - factors at each level), adjustments for measurement errors in predictors, spatial conditional auto regressive (CAR) models, autoregressive residual structures at level 1, and a selection of MCMC algorithms to increase efficiency.

Although MLwiN can be run via a macro language and the command line, this can prove unwieldy, reflecting its origins building on the earlier statistical package NANOStat (Healy 1989). Indeed, it is likely that many users operate MLwiN via its graphical user interface (GUI); this has a number of innovative features, such as an interactive equations window, in which users can point-and-click on elements of the fully-formatted mathematical formulae representing their model to change its specification, and interactive graphical displays, allowing users to ascertain the identity of plotted points by simply clicking on them.

Funding from the UK’s Economic and Social Research Council (ESRC) has allowed MLwiN to be offered free to UK-based academics, and it is otherwise available for purchase, and as an unrestricted 30-day trial version. The Centre for Multilevel Modelling’s website (http://www.bristol.ac.uk/cmm/) provides details on how to obtain the software, as well as manuals and other resources offering guidance to MLwiN, and indeed to multilevel modeling in general.
1.2. R

R (R Core Team 2014) is a freely-available, open source “language and environment for statistical computing and graphics” (http://www.r-project.org/). It is designed to be highly extensible, as evidenced by the large number of user-authored add-on packages available on the Comprehensive R Archive Network (CRAN; http://cran.r-project.org/). In contrast to MLwiN, R is chiefly designed to be operated via a command line interface (CLI), although alternative user interfaces are available. Considerable support and advice is available to R users via http://www.r-project.org/, together with a vibrant online community of other forums and resources, as well as a range of books and manuals.

1.3. The R2MLwiN package

R2MLwiN has been designed to run MLwiN from within the R environment, combining the multilevel modeling functionality of the former with the benefits of working within the environment of the latter. For example, one can parsimoniously specify, in R, the estimation of a series of models in MLwiN, and take advantage of R’s scripting language, and powerful and flexible graphing functionality, to efficiently post-process the results returned. In addition, whilst a number of sophisticated data manipulation and handling functions are available in MLwiN, R offers further flexibility, including the import of data saved in a wide range of formats. Furthermore, since the recently-released native versions of the MLwiN engine for Mac OS X and Linux only offer an MLwiN macro interface, R2MLwiN offers a convenient means of interacting with them. More generally, performing analyses via the use of command line scripts can facilitate faithful documentation and thus aid reproducibility.

As with all packages available on CRAN, R2MLwiN has supporting help files, and also has a supporting website maintained by R2MLwiN’s authors (http://www.bristol.ac.uk/cmm/software/r2mlwin/). In addition, R2MLwiN comes with a large number of demos: R scripts replicating all the analyses conducted in the User’s Guide to MLwiN (Rasbash et al. 2012), which describes model-fitting via iterative generalised least squares (IGLS) estimation (which yields maximum likelihood estimates), and the guide to MCMC Estimation in MLwiN (Browne 2012). The following will return a list of all available demos (note: in all the example script which follows, R> denotes the R prompt, whilst +, if appearing at the start of a line, indicates it is a continuation of the line above):

R> library("R2MLwiN")
R> demo(package = "R2MLwiN")

Note that on loading R2MLwiN, the default path to MLwiN will be stated in the text returned. This can be changed away from the default via options(MLwiN_path = "path/to/MLwiN vX.XX/"). The script for a specific demo can be viewed via:

R> file.show(system.file("demo", "MCMCGuide03.R", package = "R2MLwiN"))

and a specific demo can be run via:

R> demo(MCMCGuide03)
In the following sections we work through a variety of examples chosen firstly to illustrate the fundamentals of working with R2MLwiN, including for those relatively inexperienced in R, MLwiN and/or multilevel modelling in general, and secondly to highlight features which may be of particular interest to R users wishing to fit multilevel models, such as functionality not commonly-supported by other R packages. We begin with an example using IGLS, and then move on to consider MCMC. The models start fairly simple so that we can familiarise the user with the syntax used in R2MLwiN while in later sections we describe more complex models.

2. Fitting a 2-level continuous response model using IGLS

For our first example, we will fit a 2-level continuous response model using IGLS, employing an educational dataset available as the sample dataset tutorial in both MLwiN and R2MLwiN. This is a subset of data from a much larger dataset of examination results from six inner-London Education Authorities (school boards). The original analysis (Goldstein et al. 1993) sought to establish whether some secondary schools had better student exam performance at 16 than others, after taking account of variations in the characteristics of students when they started secondary school; i.e., the analysis investigated the extent to which schools ‘added value’ (with regard to exam performance), and then examined what factors might be associated with any such differences.

R> data("tutorial")

The variables we will analyse in the following examples are summarised in Table 1 (although you can view descriptions of all the variables in the original dataset by typing ?tutorial).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>school</td>
<td>Numeric school identifier.</td>
</tr>
<tr>
<td>student</td>
<td>Numeric student identifier.</td>
</tr>
<tr>
<td>normexam</td>
<td>Students’ exam score at age 16, normalised to have approximately a standard Normal distribution.</td>
</tr>
<tr>
<td>standlrt</td>
<td>Student’s score at age 11 on the London reading test (LRT), standardised using Z-scores.</td>
</tr>
</tbody>
</table>

Table 1: Variables in the tutorial dataset, as modelled in the worked example.

We will start with an example of the simplest multilevel model one can fit: a 2-level variance components model with a continuous response. Such models partition the variance in the response variable between the levels specified in the model. We will choose normexam as our response variable for student \(i\) in school \(j\); see Equation 1.

\[
\text{normexam}_{ij} = \beta_0 + u_j + e_{ij}
\]

\[
u_j \sim N\left(0, \sigma_u^2\right)
\]

\[
e_{ij} \sim N\left(0, \sigma_e^2\right)
\]

Here, \(u_j\) corresponds to the school-level random effect whilst \(e_{ij}\) is the student-level residual error; \(u_j\) and \(e_{ij}\) are assumed to be independent of one another and normally-distributed.
with zero means and constant variances σ_u^2 and σ_e^2. The model thus partitions the variance in normexam between that attributable to schools (σ_u^2), corresponding to departures of the school means from the overall mean (β_0), and that attributable to students within schools (σ_e^2), corresponding to departures of students’ normexam scores from the mean of the school they attend.

We can fit this model as follows:

```r
R> F1 <- normexam ~ 1 + (1 | school) + (1 | student)
R> (VarCompModel <- runMLwiN(Formula = F1, data = tutorial))
```

Here we have created an object, `VarCompModel`, to which we have assigned a call (with appropriate arguments) to `R2MLwiN`'s `runMLwiN` function. In this example the `Formula` and `data` arguments are the only ones explicitly declared. In the case of the `Formula`, `normexam` has been specified as the response variable, since it is to the left of the tilde (`~`), and only an intercept is included in the fixed part of the model. Note that the intercept is not included by default (this is keeping with the manner in which models are specified in MLwiN), and so is explicitly added by including 1 to the right of the tilde. The random part of the model is specified in sets of parentheses arranged in descending order with respect to their hierarchy. So here we have specified that the coefficient of the intercept is allowed to randomly-vary at level 2 (1 | school) and level 1 (1 | student). Note that the variable containing the level 1 ID needs to be explicitly specified unless the model is a discrete response model (in which case it should not be specified). See Table 2 (plus later examples) for details of how to specify the `Formula` argument when modeling other distributions, and also Section 10 for an example using categorical explanatory variables.

Other than nominating the `data.frame` containing the variables to be modelled in the `data` argument, we accept the defaults for `runMLwiN`'s other arguments (see `?runMLwiN`). These include the distribution to be modelled (defaulting to `D = "Normal"`; see Table 2 for other distributions, many of which are explored in later examples) and also an argument pertaining to estimation options; this defaults to IGLS estimation, which is denoted by `estoptions = list(EstM = 0)`. `estoptions` is a list with a large number of possible terms – some are covered in later examples, but a more comprehensive account is provided in the relevant `R2MLwiN` help files. We also accept the default `workdir = tempdir()`, which indicates the output files are to be saved in the temporary directory.
Table 2: A summary of options for the Formula argument in R2MLwiN. They assume an intercept is added (which needs to be explicitly specified, here via the addition of 1). <link> denotes the link function, <y1>, <y2>, etc. represent response variables, <denom> denotes the denominator, <offs> the offset (optional), <L2>, <L1>, etc. the variables containing the level 2 and level 1 identifying codes, and <ref_cat> represents the reference category of a categorical response variable (optional: if unspecified the lowest level of the factor is used as the reference category). Explanatory variables are specified as e.g., <x1> + <x2>. For "Ordered Multinomial", "Multivariate Normal" and "Mixed" responses, \([<\text{common}>]\) indicates a common coefficient (i.e., the same for each category) is to be fitted; here \(<\text{common}>\) takes the form of a numeric identifier indicating the responses for which a common coefficient is to be added (e.g., \([1:5]\) to fit a common coefficient for categories 1 to 5 of a 6-point ordered variable, \([1]\) to fit a common coefficient for the response variable specified first in the Formula object for a "Mixed" response model, etc.). Otherwise a separate coefficient (i.e., one for each category) is added. \(<\text{Normal_resp}>\) indicates the position (as an integer) the Normal response(s) appears in the formula (2 in the examples in the table). For "Mixed" response models, the Formula arguments need to be grouped in the order the distributions are listed in D. Note that, when using IGLS, quasi-likelihood methods are used for discrete response models (and not, for example, adaptive quadrature). \(\dagger\) denotes IGLS only.

<table>
<thead>
<tr>
<th>D</th>
<th>Formula</th>
<th>Where (<\text{link}>) can equal ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Normal"</td>
<td><y1> ~ 1 + <x1> + ... + (1(<L2>)) + (1(<L1>))</td>
<td>(identity link assumed)</td>
</tr>
<tr>
<td>"Poisson"</td>
<td>(<\text{link}>(<y1>) ~ 1 + \text{offset(<offs>)} + <x1> + ... + (1(<L2>)))</td>
<td>(\log)</td>
</tr>
<tr>
<td>"Negbinom"</td>
<td>(<\text{link}>(<y1>) ~ 1 + \text{offset(<offs>)} + <x1> + ... + (1(<L2>)))</td>
<td>(\log)</td>
</tr>
<tr>
<td>"Binomial"</td>
<td>(<\text{link}>(<y1>, <\text{denom}>) ~ 1 + <x1> + ... + (1(<L2>)))</td>
<td>logit, probit, cloglog</td>
</tr>
<tr>
<td>"Unordered Multinomial"</td>
<td>(<\text{link}>(<y1>, <\text{denom}>, <\text{ref_cat}>) ~ 1 + <x1> + ... + (1(<L2>)))</td>
<td>(\log)</td>
</tr>
<tr>
<td>"Ordered Multinomial"</td>
<td>(<\text{link}>(<y1>, <\text{denom}>, <\text{ref_cat}>) ~ 1 + <x1> + <x2>[<\text{common}>] + ... + (1(<\text{common}>)</td>
<td><L3> + (1(<L2>)))</td>
</tr>
<tr>
<td>"Multivariate Normal"</td>
<td>c(<y1>, <y2>, ..., ~ 1 + <x1> + <x2>[<\text{common}>] + ... + (1(<\text{common}>)</td>
<td><L3> + (1(<L2>)))</td>
</tr>
<tr>
<td>c("Mixed", "Binomial", "Normal")</td>
<td>c(<\text{link}>(<y2>, <\text{denom}>, <y1>, ...) ~ 1 + <x1> + <x2>[<\text{common}>] + ... + (1(<\text{common}>)</td>
<td><L3> + (1(<L2>)) + (1(<\text{Normal_resp}>)</td>
</tr>
<tr>
<td>c("Mixed", "Poisson", "Normal")</td>
<td>c(<\text{link}>(<y2>) ~ \text{offset(<offs>)} + <x1> + <x2>[<\text{common}>] + ... + (1(<\text{common}>)</td>
<td><L3> + (1(<L2>)) + (1(<\text{Normal_resp}>)</td>
</tr>
</tbody>
</table>

Note: \(\dagger\) denotes IGLS only.
Once this command has been entered, functions within the R2MLwiN package will then take this input and create an MLwiN macro file; MLwiN is then called and executes the macro script, and the output is returned to R for post-processing, such as producing the following output table (which can be reproduced via e.g., `summary(VarCompModel)`):

```
MLwiN (version: 2.32) multilevel model (Normal)

N min mean max
school 65  2 62.44615 198
Estimation algorithm: IGLS Elapsed time : 0.2s
Number of obs: 4059 (from total 4059) The model converged after 3 iterations.
Log likelihood: -5505.3
Deviance statistic: 11010.6

The model formula:
normexam ~ 1 + (1 | school) + (1 | student)
Level 2: school Level 1: student

The fixed part estimates:

| Coef.  | Std. Err. | z    | Pr(>|z|) | [95% Conf. Interval] |
|--------|-----------|------|---------|---------------------|
| Intercept | -0.01317 | 0.05363 | -0.25 | 0.806 | -0.11827  0.09194 |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The random part estimates at the school level:

<table>
<thead>
<tr>
<th>Coef.</th>
<th>Std. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>var_Intercept</td>
<td>0.16863</td>
</tr>
</tbody>
</table>

The random part estimates at the student level:

<table>
<thead>
<tr>
<th>Coef.</th>
<th>Std. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>var_Intercept</td>
<td>0.84776</td>
</tr>
</tbody>
</table>
```

The first few lines returned, not reproduced here (and omitted from the output below too), provide information on how estimation is progressing during the model fit (such as the iteration number), as well as a few miscellaneous MLwiN commands. Once convergence has been achieved then the summary is returned as above, confirming first the version of MLwiN used, the distribution chosen, and then some summary statistics concerning the level 2 units: namely that there were 65 schools containing a mean of 62.4 students, ranging from a minimum of 2 to a maximum of 198 students. Otherwise, the estimation method is confirmed, the time elapsed between R exporting the data/macros and the results being returned, the number of (complete) observations (this dataset has 4059 students, with no missing data for any of the modelled variables), confirmation that the model converged after 3 iterations, the log likelihood, and finally the deviance statistic \((-2 \times \text{log likelihood})\) which can be used to compare the fit of ‘nested’ models via likelihood ratio tests (see below).

Beneath that, there’s a reiteration of the model formula/levels we specified earlier, followed by the model estimates. First we see the coefficient estimates for the fixed part of the model, which in this case consists only of the intercept, indicating that the overall mean of normexam...
is -0.013 (which is close to zero since it has been standardised), with a standard error of 0.054, together with the corresponding z-score, its p-value, and confidence intervals (although these latter statistics are of little substantive interest in this particular instance).

Next we have the estimates (with standard errors) for the random part of the model, indicating that the school means are distributed around the overall mean with an estimated variance of 0.169 ($\hat{\sigma}_u^2$), with the (within-school) student scores distributed around their school mean with an estimated variance of 0.848 ($\hat{\sigma}_e^2$).

2.1. Conducting a likelihood ratio test

If we wish to investigate whether there are significant school differences in normexam (i.e., whether it is necessary to take account of clustering at the school-level or not), we can conduct a likelihood ratio test: subtracting the deviance statistic from the current 2-level model from the corresponding value from the simpler single-level model (Equation 2) and comparing this against a χ^2 distribution with the appropriate degrees of freedom (in this case 1, since the addition of only one parameter distinguishes the two models).

\[
\text{normexam}_i = \beta_0 + e_i \\
e_i \sim N(0, \sigma_e^2)
\]

(2)

We do so here using the generic S4 method `logLik` included in the `mlwinfitIGLS-class` (IGLS model fit) object; this allows us to conduct a likelihood ratio test using the `lrtest` function, which is part of the `lmtest` package:

```r
R> F2 <- normexam ~ 1 + (1 | student) 
R> OneLevelModel <- runMLwiN(Formula = F2, data = tutorial) 
R> if (!require(lmtest)) install.packages("lmtest") 
R> lrtest(OneLevelModel, VarCompModel)
```

Likelihood ratio test

<table>
<thead>
<tr>
<th>#Df</th>
<th>LogLik</th>
<th>Df</th>
<th>Chisq</th>
<th>Pr(>Chisq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-5754.7</td>
<td>2</td>
<td>498.72</td>
<td>< 2.2e-16</td>
</tr>
</tbody>
</table>

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As such, we can see there are highly-significant effects of school on pupils’ normexam scores.

2.2. Calculating the variance partition coefficient (VPC)

If we wanted to find out how much of the variance in normexam is due to differences between schools, and how much is due to differences between students within schools, then we could calculate the variance partition coefficient using the relevant slots for this S4 class object to pull out the estimates we need for the calculation; in this instance we use the slot "RP", which stands for “random part” (typing `slotNames(VarCompModel)` will list all available slots):
i.e., approximately 17% of the total variance in normexam is attributable to differences between schools (note: calculating the VPC is less straightforward for random coefficients and discrete response models - e.g., see Goldstein et al. 2002).

3. Storing residuals

By default, R2MLwiN doesn’t store residuals (at any level), but it is straightforward to request it to do so by simply toggling the value of resi.store, in the list of estoptions, as follows (see Section 8, as well as ?runMLwiN, for more advanced options regarding saving residuals):

R> VarCompResid <- runMLwiN(Formula = F1, data = tutorial, + estoptions = list(resi.store = TRUE))

We can then, for instance, plot the residuals using R2MLwiN’s caterpillar function, a wrapper for the plot function with the addition of error bars, yielding the plot displayed in Figure 1; see the R2MLwiN demo MCMCGuide04 for an alternative choice of caterpillar plot:

R> residuals <- VarCompResid@residual$lev_2_resi_est_Intercept
R> residualsCI <- 1.96 * sqrt(VarCompResid@residual$lev_2_resi_var_Intercept)
R> residualsRank <- rank(residuals)
R> rankno <- order(residualsRank)
R> caterpillar(y = residuals[rankno], x = 1:65, + qtlow = (residuals - residualsCI)[rankno], + qtup = (residuals + residualsCI)[rankno], + xlab = 'Rank', ylab = 'Intercept')

4. A note on debugmode and show.file

If we had included debugmode = TRUE within the list of estoptions when fitting our variance components model, above, this would have left the MLwiN application open (if running via Windows or in Wine (Wine Development Team 2015) on other platforms; Figure 2), with our variables uploaded, the equation window displayed, and the starting values (in blue) of our specified model. Pressing the ‘Resume macro’ button, within MLwiN, results in the model iterating to convergence, at which point the estimates turn green. Pressing the button again returns a dialogue box inviting the user to either close the application, or continue working in the MLwiN GUI; in either case estimates from the model as fitted up to that point are returned to R once the MLwiN application is closed. Working with MLwiN’s GUI allows us to employ some of its useful features, such as the interactive equations and graph windows,
Figure 1: Caterpillar plot of level 2 residuals produced by \texttt{R2MLwiN}'s \texttt{caterpillar} function.
5. Fitting a 2-level continuous response model using MCMC

We fitted our variance components model, above, using the default estimation method of IGLS, but we can fit the same model using Markov chain Monte Carlo (MCMC) methods by simply toggling the value of EstM (away from the default) as demonstrated below. MLwiN’s MCMC engine uses Gibbs sampling for steps in the algorithm where the conditional posterior distribution has a standard form (as is the case for all parameters in the current model), and, if not, uses single site random walk Metropolis sampling with a Normal proposal distribution and adaptive procedure (Browne and Draper 2000).

R has, of course, a variety of other packages which fit models using MCMC methods (e.g., Park et al. 2015), for example the MCMCgamm package written by Jarrod Hadfield (Hadfield 2010) covers many of the same models as MLwiN and also has an impressively efficient MCMC implementation, particularly for normal response models. However, for non-normal models it does require that they contain over-dispersion terms for each observation, in part so that it can efficiently estimate the model. This is less of an issue for count data, but for binary
responses can be problematic as it is not clear in such models that over-dispersion at the observation level makes sense (Skrondal and Rabe-Hesketh 2007). Gelman and Hill (2007) cover many aspects of multilevel modelling within R, including, from an MCMC perspective, how to write an MCMC algorithm directly in the R language, and to call WinBUGS from R via R2WinBUGS (this requires the user to write their own model code to send to WinBUGS, whilst R2MLwiN generates these files, using (by default) IGLS starting values, on behalf of the user (see section 12)).

Here we fit the model using the default MCMC estimation settings, but we would ultimately need to investigate whether these were appropriate or not:

```R
R> (VarCompMCMC <- runMLwiN(Formula = F1, data = tutorial, +   estoptions = list(EstM = 1)))
```

MLwiN (version: 2.32) multilevel model (Normal)

<table>
<thead>
<tr>
<th>N</th>
<th>min</th>
<th>mean</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>school</td>
<td>65</td>
<td>2.00</td>
<td>62.44615</td>
</tr>
</tbody>
</table>

Estimation algorithm: MCMC
Elapsed time : 2.62s

Number of obs: 4059 (from total 4059) Number of iter.: 5000 Burn-in: 500
Bayesian Deviance Information Criterion (DIC)

<table>
<thead>
<tr>
<th>Dbar</th>
<th>D(thetabar)</th>
<th>pD</th>
<th>DIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10850.046</td>
<td>10790.013</td>
<td>60.034</td>
<td>10910.080</td>
</tr>
</tbody>
</table>

The model formula:
normexam ~ 1 + (1 | school) + (1 | student)
Level 2: school Level 1: student

The fixed part estimates:

| Coef. Std. Err. | z | Pr(>|z|) | [95% Cred. Interval] | ESS |
|-----------------|---|----------|----------------------|-----|
| Intercept | -0.01212 | 0.05409 | -0.22 | 0.8227 | -0.11977 0.08958 | 189 |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The random part estimates at the school level:

<table>
<thead>
<tr>
<th>Coef. Std. Err.</th>
<th>[95% Cred. Interval]</th>
<th>ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>var_Intercept</td>
<td>0.17629 0.03606</td>
<td>0.11876 0.26114</td>
</tr>
</tbody>
</table>

The random part estimates at the student level:

<table>
<thead>
<tr>
<th>Coef. Std. Err.</th>
<th>[95% Cred. Interval]</th>
<th>ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>var_Intercept</td>
<td>0.84862 0.01887</td>
<td>0.81254 0.88678</td>
</tr>
</tbody>
</table>

Here we see, towards the top of the output, that the chain has run for 5000 main iterations; this is the default in MLwiN, along with a burn-in of 500 and thinning factor of 1. If we wished not to use MLwiN’s defaults, then such parameters can be specified in the mcmcMeth list within the estoptions argument, e.g., estoptions = list(EstM = 1, mcmcMeth = list(burnin = 1000, iterations = 10000, thinning = 10)).
Below that we have the Deviance Information Criterion (DIC) model-fit statistic (Spiegelhalter et al. 2002), and the quantities from which it is derived:

- \bar{D} (D_{bar}): Average deviance across all (post-burnin) iterations;
- $D(\bar{\theta})$ ($D(\text{thetabar})$): Deviance evaluated at the estimated means of the unknown parameters θ;
- pD: The effective number of parameters, computed as $\bar{D} - D(\bar{\theta})$;
- DIC: Computed as $D(\bar{\theta}) + 2pD$: i.e., it is a measure of goodness of model fit which adjusts for model complexity, thus allowing models to be compared: models with smaller DIC values are preferred to those with large values, with differences of 5 or more considered substantial (e.g., Lunn et al. 2012).

Finally, following the model formula, we have the model estimates, which are largely similar to those from IGLS, and include 95% credible intervals (i.e., the 2.5th and 97.5th quantiles of each chain) for both the fixed and random part of the model. Note that, for the fixed part of the model, users can toggle between displaying the z score and its associated (two-tailed) p-value (i.e., assuming Normality), and a one-sided Bayesian p-value (see Section 6 for an example).

The accompanying statistics include the ESS, or effective sample size (Kass et al. 1998): i.e., the number of iterations necessary to obtain these estimates if the sample were independent and identically-distributed. As such, a low ESS (compared to the number of iterations the chain has actually run for) would indicate a strongly positively autocorrelated chain, suggesting it may need to be run longer and/or sampled in a different manner, or other alternative MCMC methodologies could be employed to aid efficiency (see Section 11).

As well as the ESS, other MCMC diagnostic aids available in the R2MLwiN package include trajectory plots, as well as a larger suite of diagnostics available via the sixway function. We’ll demonstrate the latter when plotting the chain for the variance partition coefficient (VPC) in the following section; with regard to the former, however, entering

\[R> \text{trajectories(VarCompMCMC)} \]

yields the plots presented in Figure 3, namely the trajectories for the deviance, the intercept in the fixed part of the model (FP_Intercept), and the variances at level 2 (RP2_var_Intercept), and level 1 (RP1_var_Intercept) associated with the random part of the model.

5.1. Calculating the variance partition coefficient (VPC)

For our IGLS model fitted earlier, we calculated the VPC based on a single set of point estimates; in the case of MCMC, however, we have chains for σ_u^2 and σ_e^2, and so can derive a chain for the VPC, as follows:

\[R> \text{VPC_MCMC <- VarCompMCMC["chains"][,"RP2_var_Intercept"] /} \]
\[+ \quad \text{VarCompMCMC["chains"][,"RP1_var_Intercept"] +} \]
\[+ \quad \text{VarCompMCMC["chains"][,"RP2_var_Intercept"])} \]
\[R> \text{sixway(VPC_MCMC, name = "VPC")} \]
Figure 3: Plots of MCMC chain trajectories produced by R2MLwiN’s trajectories function.
6. Adding a predictor to the fixed part of a model
If we wish to see if a predictor, e.g., students’ exam performance at age 11, appreciably improves the fit of the model, we can add it to the fixed part, as in Equation 3.

\[\text{normexam}_{ij} = \beta_0 + \beta_1 \text{standlrt}_{ij} + u_j + e_{ij} \]

\[
\begin{align*}
 u_j &\sim N(0, \sigma_u^2) \\
 e_{ij} &\sim N(0, \sigma_e^2)
\end{align*}
\]

R> F3 <- normexam ~ 1 + standlrt + (1 | school) + (1 | student)
R> (standlrtMCMC <- runMLwiN(Formula = F3, data = tutorial, + estoptions = list(EstM = 1)))

In the resulting output (truncated below) we see its coefficient estimate is positive and much greater than its standard error, indicating that it is a highly significant predictor, as reflected in its 95% credible interval, which excludes zero:

| Coef. | Std. Err. | z | Pr(>|z|) | [95% Cred. Interval] | ESS |
|-------|-----------|------|----------|----------------------|-----|
| Intercept | 0.00514 | 0.04245 | 0.12 | 0.9036 | -0.07933 0.08896 | 211 |
| standlrt | 0.56321 | 0.01250 | 45.05 | 0 *** | 0.53862 0.58791 | 4060 |

Note that if we wish to instead view one-sided Bayesian p-values – i.e., the proportion of chain iterations which are of the opposite sign to the chain mean (the coefficient estimate in our output) – then we can request this as follows; here the output (again, truncated) indicates that the proportion of chain iterations which were below zero for the Intercept was 0.444, whilst none of the 5000 iterations were below zero for standlrt:

R> print(standlrtMCMC, z.ratio = FALSE)

We also see a large reduction in the DIC in this model:

R> VarCompMCMC["BDIC"][["DIC"]]

7. Priors, starting values, and random seeds

Browne (2012) describes in detail the priors, starting values, and random seeds used by default by MLwiN’s MCMC engine, and how to modify them to suit users’ own needs, so we won’t
fully reiterate those details here, other than providing the following few examples by means of illustration of how to do so via R2MLwiN.

For fixed parameters MLwiN employs, by default, an improper uniform prior \(p(\beta) \propto 1 \), but conjugate informative priors can readily be specified as a Normal distribution with a mean and standard deviation as determined by the user. Let’s assume we have gleaned, from prior work, some knowledge leading us to propose a prior for standlrt with a mean of 1 and standard deviation of 0.01; we can pass this information onto priorParam, listed within mcmcMeth, itself listed within estoptions, by specifying (via fixe) that we wish to construct a proper Normal prior for the term in the fixed part of the model called standlrt, with c(mean, sd).

See Figure 5 for a plot produced using the lattice package (Sarkar 2008), automatically loaded with R2MLwiN, indicating a strong prior which disagrees with the data.

```R
R> informpriorMCMC <- runMLwiN(Formula = F3, data = tutorial, + estoptions = list(EstM = 1, + mcmcMeth = list(priorParam = list(fixe = list(standlrt = c(1, 0.01))))))
R> PlotDensities <- data.frame( + PostAndPrior = c(informpriorMCMC["chains"][, "FP_standlrt"], + qnorm(seq(1 / 5000, 1, by = 1 / 5000), mean = 1, sd = 0.01)), + id = c(rep("Posterior", 5000), rep("Prior", 5000)))
R> densityplot(~ PostAndPrior, data = PlotDensities, groups = id, ref = TRUE, + plot.points = FALSE, auto.key = list(space = "bottom"), xlab = NULL)
```

Here, by means of illustration, we’ve described changing the prior for a parameter in the fixed part of the model, but R2MLwiN allows conjugate priors for other parameters to be modified as well, including Wishart or gamma priors for the covariance matrix, or scalar variance, in the random part of the model; see ?runMLwiN or ?prior2macro for further details.

By default, MLwiN’s MCMC engine uses IGLS estimates as starting values for each parameter; this is one of the reasons its MCMC engine converges comparatively quickly which is an advantage over for example WinBUGS. However, if we wished to change the starting values, we can easily do so via the estoptions argument: specifically the startval list. Here we have specified starting values of -2 and 5 for the coefficient estimates of the Intercept and standlrt, respectively, in the fixed part of the model, and starting values of 2 and 4 for \(\sigma_u^2 \) and \(\sigma_e^2 \), respectively, in the random part of the model. For illustrative purposes, we also dispense with the burnin, allowing us to subsequently view the first 500 iterations, as these will be most influenced by the starting values:

```R
R> OurStartingValues <- list(FP.b = c(-2, 5), RP.b = c(2, 4))
R> startvalMCMC <- runMLwiN(F3, data = tutorial, + estoptions = list(EstM = 1, startval = OurStartingValues, + mcmcMeth = list(burnin = 0, iterations = 500)))
R> trajectories(startvalMCMC["chains"], Range = c(1, 500))
```

Here we can see, in Figure 6, the chains quickly moving from the starting values we have given them to values closer to those we would have received from an initial IGLS fit.

Finally, it is also a simple matter to change the random number seed from the default of 1 (e.g., estoptions = list(EstM = 1, mcmcMeth = list(seed = 2))).
Figure 5: A densityplot of the prior and posterior distributions for `standlrt`.
Figure 6: Chain trajectories from a model fit with custom (non-IGLS) starting values.
8. Adding a random slope / coefficient

In the modelling so far we have assumed that only the intercept term in our models varies across clusters. We have already included `standlrt` in the fixed part of the model to allow for a fixed slope effect; if we also include it to the left of `school` in the random part of the model, we will additionally allow the coefficient of our predictor to randomly-vary across level 2 units, thus specifying Equation 4.

\[
\text{normexam}_{ij} = \beta_0 + \beta_1 \text{standlrt}_{ij} + u_{0j} + u_{1j} \text{standlrt}_{ij} + e_{ij}
\]

\[
\begin{pmatrix}
 u_{0j} \\
 u_{1j}
\end{pmatrix} \sim N\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma^2_{u0} & \sigma_{u01} \\ \sigma_{u01} & \sigma^2_{u1} \end{pmatrix}\right)
\]

\[
e_{ij} \sim N\left(0, \sigma^2_{e}\right)
\]

\[
(\text{4})
\]

R> F4 <- normexam ~ 1 + standlrt + (1 + standlrt | school) + (1 | student)
R> (standlrtRS_MCMC <- runMLwiN(
 + Formula = F4, data = tutorial,
 + estoptions = list(EstM = 1, resi.store.levs = 2)))

MLwiN (version: 2.32) multilevel model (Normal)

\[
\begin{array}{cccc}
\text{N} & \text{min} & \text{mean} & \text{max} \\
\hline
\text{school} & 65 & 2 & 62.44615 & 198 \\
\end{array}
\]

Estimation algorithm: MCMC Elapsed time : 4.98s
Number of obs: 4059 (from total 4059) Number of iter.: 5000 Burn-in: 500
Bayesian Deviance Information Criterion (DIC)

Dbar D(thetabar) pD DIC
9122.986 9031.321 91.666 9214.652

The model formula:
normexam ~ 1 + standlrt + (1 + standlrt | school) + (1 | student)
Level 2: school Level 1: student

The fixed part estimates:

| Coef. | Std. Err. | z | Pr(>|z|) | [95% Cred. Interval] | ESS |
|--------|-----------|-------|---------|----------------------|-----|
| Intercept | -0.00569 | 0.03922 | -0.15 | 0.8847 | -0.08045 0.07369 | 233 |
| standlrt | 0.55827 | 0.02047 | 27.27 | 9.883e-164 | *** 0.51762 0.59858 | 769 |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The random part estimates at the school level:

<table>
<thead>
<tr>
<th>Coef.</th>
<th>Std. Err.</th>
<th>[95% Cred. Interval]</th>
<th>ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>var_Intercept</td>
<td>0.09600</td>
<td>0.01985</td>
<td>0.06396 0.13998</td>
</tr>
<tr>
<td>cov_Intercept_standlrt</td>
<td>0.01941</td>
<td>0.00723</td>
<td>0.00681 0.03476</td>
</tr>
<tr>
<td>var_standlrt</td>
<td>0.01547</td>
<td>0.00450</td>
<td>0.00810 0.02561</td>
</tr>
</tbody>
</table>

The random part estimates at the student level:

<table>
<thead>
<tr>
<th>Coef.</th>
<th>Std. Err.</th>
<th>[95% Cred. Interval]</th>
<th>ESS</th>
</tr>
</thead>
</table>

R2MLwiN: Run MLwiN From Within R
Here we see that including such a random slope increases the effective number of parameters (pD), but the reduction in DIC indicates that, despite this increase in complexity, it is a better model:

```r
R> ComparingModels <- rbind(standlrtMCMC["BDIC"], standlrtRS_MCMC["BDIC"])
R> rownames(ComparingModels) <- c("Random intercept", "Random slope")
R> ComparingModels
```

```
Dbar  D(thetabar)  pD     DIC
Random intercept  9209.146  9149.164 59.98223 9269.128
Random slope      9122.986  9031.321 91.66588 9214.652
```

We included `resi.store.levs = 2` in our list of `estoptions`, above, to illustrate `R2MLwiN`’s `predLines` function; this draws predicted lines against an explanatory variable for each group at a higher level, calculating the median and quantiles in doing so. For example, the script below produces a plot of all 65 school lines, plus their intervals (see Figure 7). As well as specifying the model object, we also provide the name of the predictor (`xname`), the level (`lev`), and the probabilities (`probs`) used to calculate the lower and upper quantiles from which the error bars are plotted:

```r
R> predLines(standlrtRS_MCMC, xname = "standlrt", lev = 2,
+           probs = c(.025, .975), legend = FALSE)
```

By not declaring otherwise, we have accepted the default of `selected = NULL` and have thus produced quite a busy plot, although a general fanning-out pattern is apparent, reflecting the positive intercept/slope covariance at the school level (`cov_Intercept_standlrt`, in the model output above). To better distinguish individual schools, however, we can instead choose to select just a few (requesting a `legend` whilst doing so; see Figure 8):

```r
R> predLines(standlrtRS_MCMC, xname = "standlrt", lev = 2,
+           selected = c(30, 44, 53, 59), probs = c(.025,.975), legend = TRUE)
```

9. Modeling complex level 1 variance

Another important aspect of multilevel models is their ability to model complex level 1 variance – i.e., residual heteroscedasticity. Whilst it is not currently possible to fit complex level 1 variance models in R packages such as `lme4` (Bates et al. 2014), it is possible to do so via `MLwiN` (using both IGLS and MCMC, although here we focus on the latter). For example, taking the model we have just fitted above, we can allow for the possibility that variability in `normexam` within-schools (i.e., around their fitted regression lines) may also depend on `standlrt` (see Browne et al. 2002, for an algorithm to fit this extension).
Figure 7: Predicted lines (with 95% credible intervals) for each of the 65 schools in the tutorial dataset.

Figure 8: Predicted lines (with 95% credible intervals) for four schools in the tutorial dataset.
When fitting this model below, note that we’ve chosen to include `mcmcMeth = list(lclo = 1)` in our list of `estoptions` so that MLwiN will fit the log of the precision (1 / variance) at level 1 as a function of the predictors; since this can take any value on the real line, we are free of the restrictions on prior distributions which result from fitting the variance as a linear function of the predictors (see Spiegelhalter et al. 2000):

```r
R> F5 <- normexam ~ 1 + standlrt + (1 + standlrt | school) +
   + (1 + standlrt | student)
R> standlrtC1V_MCMC <- runMLwiN(
   + Formula = F5, data = tutorial,
   + estoptions = (list(EstM = 1, mcmcMeth = list(lclo = 1))))
```

Having fitted this model, we can then explore how the variance changes both within and between schools for different values of the intake score, `standlrt`, for example in a plot (Figure 9):

```r
R> l2varfn <- standlrtC1V_MCMC["RP"][["RP2_var_Intercept"]]
   + 2 * standlrtC1V_MCMC["RP"][["RP2_cov_Intercept_standlrt"]]
   + tutorial[["standlrt"]]
R> l1varfn <- 1 / exp(standlrtC1V_MCMC["RP"][["RP1_var_Intercept"]]
   + 2 * standlrtC1V_MCMC["RP"][["RP1_cov_Intercept_standlrt"]]
   + tutorial[["standlrt"]]
R> plot(sort(tutorial[["standlrt"]]),
   + l2varfn[order (tutorial[["standlrt"]])], xlab = "standlrt",
   + ylab = "variance", ylim = c(0,.7), type = "l")
R> lines(sort(tutorial[["standlrt"]]),
   + l1varfn[order (tutorial[["standlrt"]])], lty = "longdash")
R> abline(v = 0, lty = "dotted")
R> legend("bottomright", legend = c("between-student", "between-school"),
   + lty = c("longdash", "solid"))

Figure 9 indicates that the between-school variation generally increases as `standlrt` increases, whereas the opposite is true for the between-student (within-school) variation.

Finally, the following sample of three trajectory plots, plotting only the last 500 iterations (see Figure 10), illustrate that MLwiN has recognised that a different sampling method – Metropolis Hastings (MH), with its characteristic block-like appearance – is necessary to update the level 1 variance parameters, with Gibbs sampling updating the other parameters.

```r
R> trajectories(standlrtC1V_MCMC["chains"][, "FP_Intercept",
 + drop = FALSE], Range = c(4501, 5000))
R> trajectories(standlrtC1V_MCMC["chains"][, "RP2_var_Intercept",
 + drop = FALSE], Range = c(4501, 5000))
R> trajectories(standlrtC1V_MCMC["chains"][, "RP1_var_Intercept",
 + drop = FALSE], Range = c(4501, 5000))
```
Figure 9: A plot of the variance function from a random slopes model allowing for heterogeneity at level 1.
Figure 10: Modeling complex level 1 variance: chain trajectories of (from top) $\beta_0$, $\sigma^2_{u_0}$, and $\sigma^2_{e_0}$. 
10. Fitting a 2-level binary response model using MCMC

We will now move on from continuous response models to consider some of the other response
distribution types supported by R2MLwiN. As Table 2 illustrates, many of these, including
the "Binomial" distribution we explore in the next example, can be fitted using IGLS or
MCMC estimation; here, though, we will stay with MCMC in order to illustrate alternative
MCMC methodology implemented in MLwiN, and also interoperability with BUGS, in the
following sections.

Our example dataset is a sub-sample of the 1989 Bangladesh Fertility Survey (Huq and
Cleland 1990), provided as bang1 in both MLwiN and R2MLwiN (see Table 3 for a list of the
variables to be modelled).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>woman</td>
<td>Identifying code for each woman.</td>
</tr>
<tr>
<td>district</td>
<td>Identifying code for each district.</td>
</tr>
<tr>
<td>use</td>
<td>Contraceptive use status at time of survey; levels are Not_using and Using.</td>
</tr>
<tr>
<td>lc</td>
<td>Number of living children at time of survey; levels correspond to none (None), one (One_child), two (Two_children), or three or more children (Three_plus).</td>
</tr>
<tr>
<td>age</td>
<td>Age of woman at time of survey (in years), centered on the sample mean of 30 years.</td>
</tr>
<tr>
<td>urban</td>
<td>Type of region of residence; levels are Rural and Urban.</td>
</tr>
<tr>
<td>cons</td>
<td>A constant of ones.</td>
</tr>
</tbody>
</table>

Table 3: Variables in the bang1 dataset, as modelled in the worked example.

Below we construct a logit model to investigate whether the use of contraceptives at the time
of the survey is predicted by the age of the respondent, their number of children living at the
time of the survey (lc), and the type of region in which they reside (urban); furthermore,
we’ll allow the coefficient of the latter predictor to randomly-vary at the district-level to
explore whether variability between Urban areas within districts differs from that between
Rural areas within districts, producing the random coefficient model in Equation 5.

\[
\begin{align*}
\text{use}_{ij} & \sim \text{Bernoulli}(\pi_{ij}) \\
\text{logit}(\pi_{ij}) & = \beta_0 + \beta_1\text{age}_{ij} + \beta_2\text{lcOne\_child}_{ij} + \beta_3\text{lcTwo\_children}_{ij} + \beta_4\text{lcThree\_plus}_{ij} \\
& \quad + \beta_5\text{urban}_{ij} + u_{0j} + u_{5j}\text{urban}_{ij} \\
\begin{pmatrix} u_{0j} \\ u_{5j} \end{pmatrix} & \sim \mathcal{N}\left( \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma^2_{u0} & \sigma_{u05} \\ \sigma_{u05} & \sigma^2_{u5} \end{pmatrix} \right)
\end{align*}
\]  

We can fit this, via R2MLwiN, as follows:

\[
R> \text{data(}"\text{bang1}\text{")}
R> \text{F6 = logit(use, cons) \~ 1 + age + lc + urban + (1 + urban | district)}
R> \text{binomialMCMC <- runMLwiN(}Formula = \text{F6, D = "Binomial", data = bang1,} 
\]
+ estoptions = list(EstM = 1))
R> trajectories(binomialMCMC["chains"][,"FP_Intercept", drop = FALSE])

As discussed in Table 2, the terms in the parentheses immediately following logit are of the form response variable, denominator; since MLwiN requires binary response variables to be of the form 0/1, R2MLwiN transforms it into that format having detected it is indeed binary, and thus we are modeling a Bernoulli distribution, with a constant of ones as denominator. 1c is a factor variable and so dummy variables will be added as predictors with None (see min(levels(bang1$l1c))) as the reference category (the relevel function, part of the stats package, can be used to assign an alternative reference category, by re-ordering the levels of a factor prior to an runMLwiN call).

We’ve requested, on the last line, a plot of the chain trajectory for the intercept in the fixed part of the model. As the resulting plot (Figure 11) indicates, mixing here looks relatively poor, and so it may be worthwhile examining some of the alternative MCMC methods implemented in MLwiN; we review these, and apply one to the current example, in the next section.

11. Alternative MCMC methods implemented in MLwiN

MLwiN’s MCMC engine features a number of methods which can improve the efficiency of MCMC estimation (see Browne 2012, chapters 21-25). Table 4 provides a summary of available methods, one of which – orthogonal parameterisation – we explore in the example below, before moving on to discuss further options via MLwiN’s interoperability with BUGS.

<table>
<thead>
<tr>
<th>Method</th>
<th>As currently implemented in MLwiN</th>
<th>As specified in mcmcOptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structured MCMC (e.g., Sargent et al. 2009)</td>
<td>2-level nested Normal response models, with no complex level 1 variation, only</td>
<td>smcm = 1</td>
</tr>
<tr>
<td>Structured MVN framework (e.g., Browne et al. submitted)</td>
<td>2-level variance components models only</td>
<td>smvn = 1</td>
</tr>
<tr>
<td>Orthogonal fixed effect vectors (e.g., Browne et al. 2009)</td>
<td>All models</td>
<td>orth = 1</td>
</tr>
<tr>
<td>Parameter expansion (e.g., Liu and Wu 1999)</td>
<td>All models</td>
<td>paex = c(&lt;L&gt;, 1)</td>
</tr>
<tr>
<td>Hierarchical centring (e.g., Gelfand et al. 1995)</td>
<td>All models</td>
<td>hcen = &lt;L&gt;</td>
</tr>
</tbody>
</table>

Table 4: A summary of some alternative methods for MCMC estimation available via the R2MLwiN package. <L> is an integer specifying the level at which parameter expansion / hierarchical centering (respectively) is to occur. Taking Structured MCMC as an example, these methods are implemented as follows: estoptions = list(EstM = 1, mcmcOptions = list(smcm = 1), ...).

11.1. An example using orthogonal parameterisation to improve mixing
Given that we encountered poor mixing in our last model fit, above, we will examine whether orthogonal parameterisation may help; this replaces a set of fixed effect predictors with an alternative group of predictors that span the same parameter space, but are orthogonal, and is particularly useful for instances such as this, where we are modeling a non-Normal distribution (since fixed effects in Normal models are generally updated in a block).

Here, then, we redefine `estoptions`, toggling `orth` to 1 in the list of `mcmcmOptions`, and run the model again:

```r
R> (OrthogbinomialMCMC <- runMLwiN(Formula = F6,
+ D = "Binomial", data = bang1,
+ estoptions = list(EstM = 1, mcmcOptions = list(orth = 1))))
```

MLwiN (version: 2.32) multilevel model (Binomial)

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>min</th>
<th>mean</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>district</td>
<td>60</td>
<td>2</td>
<td>32.2333</td>
<td>118</td>
</tr>
</tbody>
</table>

Estimation algorithm: MCMC  Elapsed time : 15.06s

Number of obs: 1934 (from total 1934) Number of iter.: 5000  Burn-in: 500

Bayesian Deviance Information Criterion (DIC)

<table>
<thead>
<tr>
<th></th>
<th>Dbar</th>
<th>D(thetabar)</th>
<th>pD</th>
<th>DIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2329.877</td>
<td>2273.176</td>
<td>56.702</td>
<td>2386.579</td>
</tr>
</tbody>
</table>

The model formula:

```
logit(use, cons) ~ 1 + age + lc + urban + (1 + urban | district)
```

The fixed part estimates:

| Coef.    | Std. Err. | z   | Pr(>|z|) | [95% Cred. Interval] | ESS |
|----------|-----------|-----|----------|----------------------|-----|
| Intercept| -1.70164  | 0.16700 | -10.19 | 2.237e-24*** | -2.03503 -1.38148 | 246 |
| age      | -0.02645  | 0.00798 | -3.31  | 0.0009172*** | -0.04191 -0.01117 | 1063 |
| lcOne_child | 1.12627 | 0.16209 | 6.95  | 3.716e-12*** | 0.80576 1.45134 | 923 |
| lcTwo_children | 1.34947 | 0.17656 | 7.64  | 2.133e-14*** | 1.00799 1.69571 | 921 |
| lcThree_plus | 1.34643 | 0.18526 | 7.27  | 3.676e-13*** | 0.97975 1.70612 | 872 |
| urbanUrban | 0.81100  | 0.1920  | 4.22  | 2.426e-05*** | 0.45403 1.22458 | 151 |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 1

The random part estimates at the district level:

<table>
<thead>
<tr>
<th>Coef.</th>
<th>Std. Err.</th>
<th>[95% Cred. Interval]</th>
<th>ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>var_Intercept</td>
<td>0.41681</td>
<td>0.13542</td>
<td>0.21169</td>
</tr>
<tr>
<td>cov_Intercept_urbanUrban</td>
<td>-0.41923</td>
<td>0.17234</td>
<td>-0.83135</td>
</tr>
<tr>
<td>var_urbanUrban</td>
<td>0.70042</td>
<td>0.29963</td>
<td>0.28379</td>
</tr>
</tbody>
</table>

The random part estimates at the l1id level:

<table>
<thead>
<tr>
<th>Coef.</th>
<th>Std. Err.</th>
<th>[95% Cred. Interval]</th>
<th>ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>var_bcons_1</td>
<td>1.00000</td>
<td>0.00000</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

---
As such, we see that the mixing is considerably better (Figure 12), with the ESS considerably-improved for the fixed effects (see comparison table in the following section). The model indicates that the probability of contraceptive use decreases with age, but increases with the number of living children, and is greater in Urban areas; furthermore, the variance in contraceptive use differs between Rural areas (estimated as 0.417), and Urban areas (estimated as $0.417 - 2 \times 0.419 + 0.7 = 0.28$).

12. Using R2MLwiN to write BUGS code

As well as using its own MCMC estimation engine, MLwiN can write code to fit models in WinBUGS (Lunn et al. 2000) and OpenBUGS (Lunn et al. 2009), with the inclusion of its own IGLS estimates as starting values. With the aid of the rbugs package (Yan and Prates 2013), the user can employ a single runMLwiN function call to obtain starting values from an IGLS run in MLwiN, automatically generate the necessary BUGS model code, initial values, data files, and script, and then fit the model in BUGS.

As demonstrated in the script below, WinBUGS and OpenBUGS are called via the runMLwiN argument BUGO; this is a vector where version takes the value 3 for 1.3 and 4 for 1.4, n.chains corresponds to the number of chains, debug determines whether BUGS stays open following completion of the model run, seed sets the random number seed, bugs specifies the path, and OpenBUGS can toggle between FALSE for WinBUGS, and TRUE for OpenBUGS. Here we fit the same model as in the example above (the burnin, iterations and thinning we specify are the defaults, we simply make them explicit here for the purposes of this example); by specifying show.file = TRUE in the list of estoptions, the BUGS model is returned (see supplementary materials):

```r
R> WinBUGS <- "C:/WinBUGS14/WinBUGS14.exe"
R> BUGSmodel = runMLwiN(Formula = F6, D = "Binomial",
+ data = bang1, estoptions = list(EstM = 1,
+ mcmcMeth = list(burnin = 500, iterations = 5000, thinning = 1)),
+ BUGO = c(version = 4, n.chains = 1, debug = FALSE, seed = 1,
+ bugs = WinBUGS, OpenBugs = FALSE))
R> summary(BUGSmodel)

Iterations = 1:5000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,
 plus standard error of the mean:

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>Naive SE</th>
<th>Time-series SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta[1]</td>
<td>-1.721e+00</td>
<td>0.161037</td>
<td>0.0022774</td>
<td>0.0097350</td>
</tr>
<tr>
<td>beta[2]</td>
<td>-2.675e-02</td>
<td>0.007946</td>
<td>0.0001124</td>
<td>0.0002641</td>
</tr>
</tbody>
</table>
```
Figure 11: Chain trajectory of $\beta_0$ from a binomial response model, without orthogonal parametisation.

Figure 12: Chain trajectory of $\beta_0$ from a binomial response model, with orthogonal parametisation.
On finishing the model run, the model estimates are returned (including the quantiles, not
displayed in the truncated output above), but this time as a summary of an mcmc.list (see
coda (Plummer et al. 2006)).

Running this on our machine took 140 seconds in WinBUGS, which uses (by default) a mul-
tivariate Metropolis update of the fixed effects (Gamerman 1997), whilst it took 16 seconds
to run the model for the same length of chain in MLwiN (both via R2MLwiN), which uses
a single site Metropolis sampler. As the table below indicates, however, the effective sample
sizes (ESSs) from the run in BUGS are considerably larger than those from the run (without
orthogonal parameterisation) in MLwiN (although there is considerable improvement when
we opt for orthogonal parameterisation in MLwiN, at least for the fixed effects; this took 15
seconds to run on our machine).

R> cc = cbind(binomialMCMC["FP"], OrthogbinomialMCMC["FP"])
R> dd = cbind(head(binomialMCMC["RP"], -1),
+   head(OrthogbinomialMCMC["RP"], -1))
R> ESS.binMCMC = effectiveSize(binomialMCMC["chains"][,2:10])
R> ESS.orthogMCMC = effectiveSize(OrthogbinomialMCMC["chains"][,2:10])
R> ESStable = round(rbind(cc, dd), 3)
R> BUGSlist <- c(1:6, 8, 9, 11)
R> BUGS.Coeff <- round(summary(BUGSmodel)$statistics[BUGSlist, 1], 3)
R> BUGS.ESStable <- as.data.frame(effectiveSize(BUGSmodel))
R> ESStable = cbind(ESStable[, 1], round(ESS.binMCMC), ESStable[, 2],
+   round(ESS.orthogMCMC), BUGS.Coeff, round(BUGS.ESStable[BUGSlist, ]))
R> colnames(ESStable) = c("A)Coeff. ", "A)ESS ", "B)Coeff. ",
+   "B)ESS ", "C)Coeff. ", "C)ESS")
R> cat("NB: A = MLwiN(non-orthog.), B = MLwiN(orthog.), C = WinBUGS\n"); 
+   ESStable

NB: A = MLwiN(non-orthog.), B = MLwiN(orthog.), C = WinBUGS

<table>
<thead>
<tr>
<th></th>
<th>A)Coeff.</th>
<th>A)ESS</th>
<th>B)Coeff.</th>
<th>B)ESS</th>
<th>C)Coeff.</th>
<th>C)ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP_Intercept</td>
<td>-1.724</td>
<td>61</td>
<td>-1.702</td>
<td>246</td>
<td>-1.721</td>
<td>274</td>
</tr>
<tr>
<td>FP_age</td>
<td>-0.027</td>
<td>203</td>
<td>-0.026</td>
<td>1063</td>
<td>-0.027</td>
<td>905</td>
</tr>
<tr>
<td>FP_lcOne_child</td>
<td>1.157</td>
<td>229</td>
<td>1.126</td>
<td>923</td>
<td>1.140</td>
<td>879</td>
</tr>
</tbody>
</table>
13. Modeling a cross-classified data structure

So far the multilevel models we’ve examined have been strictly hierarchical, but researchers may well encounter data structures which are cross-classified (i.e., crossed random effects), exhibit multiple membership, or indeed a combination of these; R2MLwiN allows users to fit such models via MCMC estimation.

In the following example we use an educational dataset from Fife in Scotland (available as the sample dataset xc in MLwiN and R2MLwiN); see Table 5 for a description of the variables we will model.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>attain</td>
<td>Attainment score of pupils at age 16.</td>
</tr>
<tr>
<td>pid</td>
<td>Primary school identifying code.</td>
</tr>
<tr>
<td>sid</td>
<td>Secondary school identifying code.</td>
</tr>
<tr>
<td>pupil</td>
<td>Pupil identifying code.</td>
</tr>
</tbody>
</table>

Table 5: Variables in the xc dataset, as modelled in the worked example.

We wish to model students’ examination attainment, whilst controlling for clustering due to their current (secondary) school (sid), but also controlling for clustering due to their (earlier) primary school too (pid); since not all students who attended a given primary school all subsequently attended the same secondary school, the former are not nested within the latter, and so we have a cross-classified structure (see Equation 6, which uses the classification notation as per Browne et al. (2001)).

\[
\text{attain}_i = \beta_0 + u_{\text{sid}(i)}^{(2)} + u_{\text{pid}(i)}^{(3)} + e_i \\
u_{\text{sid}(i)}^{(2)} \sim N(0, \sigma^2_{u(2)}) \\
u_{\text{pid}(i)}^{(3)} \sim N(0, \sigma^2_{u(3)}) \\
e_i \sim N(0, \sigma^2_e) 
\]

As indicated below, we need to specify that the data structure is cross-classified by declaring xc = TRUE within the list of estoptions:

```r
R> data("xc")
R> F7 = attain ~ 1 + (1 | sid) + (1 | pid) + (1 | pupil)
R> (XCModel <- runMLwiN(Formula = F7, data = xc,
+ estoptions = list(xc = TRUE, EstM = 1)))
```
MLwiN (version: 2.32) multilevel model (Normal)

N min mean max
sid 19 92 180.78947 290
pid 148 1 23.20946 72

Estimation algorithm: MCMC Cross-classified Elapsed time : 4.54s
Number of obs: 3435 (from total 3435) Number of iter.: 5000 Burn-in: 500
Bayesian Deviance Information Criterion (DIC)

<table>
<thead>
<tr>
<th></th>
<th>Dbar</th>
<th>D(thetabar)</th>
<th>pD</th>
<th>DIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16940.564</td>
<td>16833.400</td>
<td>107.164</td>
<td>17047.729</td>
</tr>
</tbody>
</table>

The model formula:

attain ~ 1 + (1 | sid) + (1 | pid) + (1 | pupil)
Level 3: sid Level 2: pid Level 1: pupil

The fixed part estimates:

| Coef. | Std. Err. | z     | Pr(>|z|) | [95% Cred. Interval] | ESS |
|-------|-----------|-------|---------|----------------------|-----|
| Intercept | 5.50404 | 0.18957 | 29.03 | 2.69e-185 *** | 5.10783 | 5.86623 | 225 |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The random part estimates at the sid level:

<table>
<thead>
<tr>
<th>Coef.</th>
<th>Std. Err.</th>
<th>[95% Cred. Interval]</th>
<th>ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>var_Intercept</td>
<td>0.41403</td>
<td>0.20963</td>
<td>0.14194</td>
</tr>
</tbody>
</table>

The random part estimates at the pid level:

<table>
<thead>
<tr>
<th>Coef.</th>
<th>Std. Err.</th>
<th>[95% Cred. Interval]</th>
<th>ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>var_Intercept</td>
<td>1.15258</td>
<td>0.21473</td>
<td>0.79583</td>
</tr>
</tbody>
</table>

The random part estimates at the pupil level:

<table>
<thead>
<tr>
<th>Coef.</th>
<th>Std. Err.</th>
<th>[95% Cred. Interval]</th>
<th>ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>var_Intercept</td>
<td>8.11992</td>
<td>0.20173</td>
<td>7.73324</td>
</tr>
</tbody>
</table>

As such we see (below) that 11.9% of the variation in exam attainment at age 16 is attributable to primary schools with less, 4.3%, attributable to secondary schools, possibly because the latter are larger, more socially-heterogeneous, institutions (e.g., Goldstein 2010):

R> PercentExplainedBy <- cbind(
+  XCModel["RP"][["RP3_var_Intercept"]]/
+  (XCModel["RP"][["RP1_var_Intercept"]]+
+  XCModel["RP"][["RP2_var_Intercept"]]+
+  XCModel["RP"][["RP3_var_Intercept"]]) * 100,
+  XCModel["RP"][["RP2_var_Intercept"]]/
+  (XCModel["RP"][["RP1_var_Intercept"]]+
+  XCModel["RP"][["RP2_var_Intercept"]]+
+  XCModel["RP"][["RP3_var_Intercept"]]) * 100)
14. Modeling a multiple membership data structure

Multiple membership models arise when we wish to control for clustering at a given ‘level’ or classification, but have lower-level units which belong to more than one group at that higher level. For example, if we wished to model employees’ earnings over the past financial year, we might want to control for non-independence due to the companies which employed them during this time. If the employees were employed by more than one company, however (i.e., they were a ‘member’ of more than one group at this higher level), it would be judicious to control for the effects of all of them.

Below we fit such a model, using the wage1 sample dataset (available in both MLwiN and R2MLwiN); see Table 6 for a description of the variables we will model, and Equation 7 for the model itself.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>Identifying code for each office worker.</td>
</tr>
<tr>
<td>company</td>
<td>Identifying code for first company worked for over the last 12 months.</td>
</tr>
<tr>
<td>company2</td>
<td>If worked for &gt;1 company over the last 12 months, identifying code for second company.</td>
</tr>
<tr>
<td>company3</td>
<td>If worked for &gt;2 company over the last 12 months, identifying code for third company.</td>
</tr>
<tr>
<td>company4</td>
<td>If worked for &gt;3 company over the last 12 months, identifying code for fourth company.</td>
</tr>
<tr>
<td>logearn</td>
<td>Workers’ (natural) log-transformed earnings over the last financial year.</td>
</tr>
<tr>
<td>numjobs</td>
<td>The number of companies worked for over the last 12 months.</td>
</tr>
<tr>
<td>weight1</td>
<td>Proportion of time worked for employer listed in company.</td>
</tr>
<tr>
<td>weight2</td>
<td>Proportion of time worked for employer listed in company2.</td>
</tr>
<tr>
<td>weight3</td>
<td>Proportion of time worked for employer listed in company3.</td>
</tr>
<tr>
<td>weight4</td>
<td>Proportion of time worked for employer listed in company4.</td>
</tr>
<tr>
<td>age_40</td>
<td>Age of workers, centered on 40 years.</td>
</tr>
</tbody>
</table>

Table 6: Variables in the wage1 dataset, as modelled in the worked example.
You can see, below, that the argument `mm`, specifying the structure of the multiple membership model, has been included in the list of `estoptions` (NB since `mm` is non-NULL, `xc` defaults to `TRUE`). `mm` can be a list of variable names, a list of vectors, or a matrix (e.g., see ?`df2matrix`). Here we employ variable names, which need to be assigned as lists to `mmvar`, specifying the classification units, and `weights`, specifying the weights. In the variables comprising the `mmvar` list, the same company, e.g., ACME Ltd, has the same value, e.g., 8, throughout. The `weights` specify the employee-level weighting given to each company they worked for: here we have chosen the proportion of time an employee has spent with a particular company. Each element of the list corresponds to a level (classification) of the model, in descending order, so the final `NA` indicates that there is not a multiple membership classification at level 1.

```r
R> data("wage1")
R> F8 = logearn ~ 1 + age_40 + numjobs + (1 | company) + (1 | id)
R> OurMultiMemb <- list(list(
+ mmvar = list("company", "company2", "company3","company4"),
+ weights = list("weight1", "weight2", "weight3", "weight4")), NA)
R> (MMembModel <- runMLwiN(Formula = F8, data = wage1,
+ estoptions = list(EstM = 1, drop.data = FALSE, mm = OurMultiMemb)))
```

R> data("wage1")
R> F8 = logearn ~ 1 + age_40 + numjobs + (1 | company) + (1 | id)
R> OurMultiMemb <- list(list(
+   mmvar = list("company", "company2", "company3","company4"),
+   weights = list("weight1", "weight2", "weight3", "weight4")), NA)
R> (MMembModel <- runMLwiN(Formula = F8, data = wage1,
+   estoptions = list(EstM = 1, drop.data = FALSE, mm = OurMultiMemb)))

```r
MLwiN (version: 2.32) multilevel model (Normal)

N min mean max
comp1 141 2 21.43262 49
Estimation algorithm: MCMC Cross-classified Elapsed time : 2.97s
Number of obs: 3022 (from total 3022) Number of iter.: 5000 Burn-in: 500
Bayesian Deviance Information Criterion (DIC)
Dbar D(thetabar) pD DIC
4625.279 4514.715 110.564 4735.843

The model formula:
logearn ~ 1 + age_40 + numjobs + (1 | company) + (1 | id)
Level 2: company Level 1: id

The fixed part estimates:

 Coef. Std. Err. z Pr(>|z|) [95% Cred. Interval] ESS
Intercept 3.04872 0.03534 86.26 0 *** 2.98024 3.11807 851
age_40 0.01273 0.00098 13.06 5.924e-39 *** 0.01084 0.01460 4273
numjobs -0.11190 0.02223 -5.03 4.803e-07 *** -0.15446 -0.06892 4594```
The random part estimates at the company level:

<table>
<thead>
<tr>
<th>Coef.</th>
<th>Std. Err.</th>
<th>[95% Cred. Interval]</th>
<th>ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>var_Intercept</td>
<td>0.05793</td>
<td>0.00916</td>
<td>0.04225 0.07808</td>
</tr>
</tbody>
</table>

The random part estimates at the id level:

<table>
<thead>
<tr>
<th>Coef.</th>
<th>Std. Err.</th>
<th>[95% Cred. Interval]</th>
<th>ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>var_Intercept</td>
<td>0.27064</td>
<td>0.00711</td>
<td>0.25717 0.28472</td>
</tr>
</tbody>
</table>

\[R > \text{MMembModel["RP"][["RP2_var_Intercept"]]} / \]
\[+ (\text{MMembModel["RP"][["RP2_var_Intercept"]]} + \]
\[+ \text{MMembModel["RP"][["RP1_var_Intercept"]]} \] * 100

\[\text{[1] 17.63173} \]

The model indicates (as calculated at the bottom) that company accounted for 17.6% of the variance in (log-transformed) earnings, having controlled for age and number of jobs. Looking at the fixed effects, earnings on average increase with age, but those employees working for more companies over the past 12 months earn on average less; it would be interesting to investigate whether these effects persist once other variables available in the dataset are taken into account, such as sex of the employee, and whether they work part-time or not, but we will leave this model as it is, and move on to our next example.

15. Multivariate response models

Here we illustrate fitting a multivariate response model. In this example dataset (see Browne 2012), taken from the larger junior school project (JSP) dataset (Mortimore et al. 1988), we have two responses (see Table 7): english – an English test score marked out of 100, and behaviour – a binary behaviour score taken in the same year. We’re interested in the correlation between English test performance and behaviour, and the effect of predictors – such as sex, and an earlier test score (ravens) – on both of them, and also the effect of an earlier English fluency indicator (fluent) on the english test (i.e., not behaviour, since preliminary investigation revealed no correlation between the two); see Equation 8.

Note that the MCMC engine in MLwiN can fit mixed response multivariate models, as well as Normal response models, but only if they consist of a mixture of Normal responses and binary responses (with a probit, rather than logit, link), as in this case. In practice latent normal variables are constructed for each binary response with the value of the binary response
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>school</td>
<td>Identifying code for school.</td>
</tr>
<tr>
<td>id</td>
<td>Identifying code for pupil.</td>
</tr>
<tr>
<td>sex</td>
<td>Sex of pupil, with levels female and male.</td>
</tr>
<tr>
<td>fluent</td>
<td>Fluency at English measure taken in Year 1, where 0 = beginner, 1 = intermediate, 2 = fully fluent.</td>
</tr>
<tr>
<td>ravens</td>
<td>Test score in Year 1, marked out of 40.</td>
</tr>
<tr>
<td>english</td>
<td>English test score taken in Year 3, marked out of 100.</td>
</tr>
<tr>
<td>behaviour</td>
<td>Behaviour rating taken in Year 3, coded lowerquarter if pupil rated in bottom 25%, and upper otherwise.</td>
</tr>
<tr>
<td>cons</td>
<td>A constant of ones.</td>
</tr>
</tbody>
</table>

Table 7: Variables in the jspmix1 dataset, as modelled in the worked example.

governing the sign of the latent variable as illustrated below:

\[
\begin{align*}
\text{english}_{ij} &= \beta_0 + \beta_1 \text{sex}_{ij} + \beta_2 \text{ravens}_{ij} + \beta_3 \text{fluent}_{ij} + u_{0j} + e_{0ij} \\
\text{behaviour}^*_{ij} &= \beta_4 + \beta_5 \text{sex}_{ij} + \beta_6 \text{ravens}_{ij} + u_{4j} + e_{4ij} \\
\end{align*}
\]

where \(\text{behaviour}^*_{ij} \geq 0\) if \(\text{behaviour}_{ij} = 1\) and \(\text{behaviour}^*_{ij} < 0\) if \(\text{behaviour}_{ij} = 0\)

\[
\begin{align*}
\begin{pmatrix} u_{0j} \\ u_{4j} \end{pmatrix} &\sim N\left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma^2_{u0} & \sigma_{u04} \\ \sigma_{u04} & \sigma^2_{u4} \end{pmatrix} \right\} \\
\begin{pmatrix} e_{0ij} \\ e_{4ij} \end{pmatrix} &\sim N\left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma^2_{e0} & \sigma_{e04} \\ \sigma_{e04} & \sigma^2_{e4} \end{pmatrix} \right\}
\end{align*}
\]

R> data("jspmix1")
R> F9 = c(english, probit(behaviour, cons)) ~ 1 + sex + ravens + fluent[1] +
+ (1 | school) + (1[1] | id)
R> (MixedRespMCMC <- runMLwiN(Formula = F9,
+ D = c("Mixed", "Normal", "Binomial"), data = jspmix1,
+ estoptions = list(EstM = 1,
+ mcmcMeth = list(fixM = 1, residM = 1, Lev1VarM = 2)))))

Here then we have two terms to the left of the tilde (\(\sim\)) in the model formula, corresponding to the two responses (their order matters, insofar as we use it to distinguish them when referring to the response variables in other parts of our model specification). Firstly we have english, and then our binary variable behaviour: this is modelled via a probit link, and with a denominator specified as cons (a constant of ones from our dataset). The default is for predictors added to the right of the tilde to have separate coefficients (i.e., one for each category) unless their name is suffixed by square brackets. In the case of the latter, a common coefficient is added to the model for the response(s) indicated in the numeric identifier within the square brackets. In this example, then, the model formula specifies separate coefficients for sex and ravens, and a common coefficient for fluent to be added to the response we earlier listed first (english). Finally, separate coefficients for the intercept are allowed to vary at level 2 (school) and also at level 1 (id), but the latter is only applicable in the case of the Normal response variable (english; hence 1[1]).
Next, after requesting MCMC estimation, and Gibbs sampling (denoted by 1) as the method used to update both the fixed (fixM) and the random effects (residM), and univariate MH (denoted by 2; 3 corresponds to multivariate MH – see ?write.MCMC for further details) to update the level 1 variance (Lev1VarM), we specify our runMLwiN function call. The arguments here will be familiar to you now, although we encounter a slightly different format for the value we assign to the distribution: if our multivariate response model consisted only of Normal responses, we’d simply specify "Multivariate Normal"; since we have mixed response types, however, we must identify the distribution of each (in an order corresponding to their position in the preceding model formula), hence the character string: D = c("Mixed", "Normal", "Binomial").

MLwiN (version: 2.32) multilevel model (Mixed)

N min mean max
school 47 7 23.80851 76

Estimation algorithm: MCMC Elapsed time : 71.89s
Number of obs: 1119 (from total 1119) Number of iter.: 5000 Burn-in: 500
Deviance statistic: NA

The model formula:
c(english, probit(behaviour, cons)) ~ 1 + sex + ravens + fluent[1] +
(1 | school) + (1[1] | id)
Level 2: school Level 1: id

The fixed part estimates:

| Coef. | Std. Err. | z | Pr(>|z|) | [95% Cred. Interval] | ESS |
|-----------|-----------|-------|----------|----------------------|-----|
| ravens_english | 1.65796 | 0.08969 | 18.48 | 2.803e-76 | *** | 1.48262 1.83135 4247 |
| ravens_behaviour | 0.05671 | 0.00747 | 7.59 | 3.233e-14 | *** | 0.04235 0.07129 1341 |
| sexmale_english | -6.26644 | 1.04471 | -6.00 | 2.002e-09 | *** | -8.33164 -4.20850 4092 |
| sexmale_behaviour | -0.41591 | 0.08779 | -4.74 | 2.168e-06 | *** | -0.59030 -0.24503 1405 |
| fluent_1 | 6.35011 | 1.28256 | 4.95 | 7.398e-07 | *** | 3.79981 8.82437 3689 |
| Intercept_1 | -9.15197 | 3.25487 | -2.81 | 0.004931 | ** | -15.37758 -4.20850 4092 |
| Intercept_2 | -0.35459 | 0.19043 | -1.86 | 0.06262 | . | -0.73660 0.01132 1541 |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The random part estimates at the school level:

<table>
<thead>
<tr>
<th>Coef. Std. Err.</th>
<th>[95% Cred. Interval]</th>
<th>ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>var_Intercept_1</td>
<td>40.71880 11.66949 22.89212</td>
<td>68.20787 2014</td>
</tr>
<tr>
<td>cov_Intercept_1_Intercept_2</td>
<td>0.06127 0.42632 -0.75637 0.94298 740</td>
<td></td>
</tr>
<tr>
<td>var_Intercept_2</td>
<td>0.06525 0.03109 0.02288 0.14159 459</td>
<td></td>
</tr>
</tbody>
</table>

The random part estimates at the id level:

<table>
<thead>
<tr>
<th>Coef. Std. Err.</th>
<th>[95% Cred. Interval]</th>
<th>ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>var_bcons_2</td>
<td>1.00000 0.00000 1.00000 1.00000 5000</td>
<td></td>
</tr>
<tr>
<td>cov_bcons_2_Intercept_1</td>
<td>6.2263 0.74048 4.72014 7.65385 301</td>
<td></td>
</tr>
<tr>
<td>var_Intercept_1</td>
<td>291.68665 12.49066 268.23256 316.74675 713</td>
<td></td>
</tr>
</tbody>
</table>

The model indicates that the Year 1 ravens test score has a positive effect on both of the Year 3 response variables we have fitted, whilst the Year 1 measure of fluency in English has a positive effect on the Year 3 English test score. Girls are found to both have a higher behaviour rating, and a better Year 3 English test score, than boys. There is a positive correlation between the two response variables at the pupil-level, but the correlation is negligible at the school-level:

```
R> CompareCorrelation <- cbind(
+ MixedRespMCMC["RP"][["RP2_cov_Intercept_1_Intercept_2"]]) / 
+ sqrt(MixedRespMCMC["RP"][["RP2_var_Intercept_1"]]) * 
+ MixedRespMCMC["RP"][["RP2_var_Intercept_2"]]),
+ MixedRespMCMC["RP"][["RP1_cov_bcons_2_Intercept_1"]]) / 
+ sqrt(MixedRespMCMC["RP"][["RP1_var_Intercept_1"]]) * 
+ MixedRespMCMC["RP"][["RP1_var_bcons_2"]))
R> colnames(CompareCorrelation) <- c("school-level", "pupil-level")
R> CompareCorrelation
```

```
school-level pupil-level
[1,] 0.0375866 0.3645697
```

Furthermore, the model indicates that school effects explain 12.2% of the residual variation in the Year 3 English test scores, and less, 6.1%, of the residual variation in the behaviour test scores (on the latent response scale):

```
R> ExplainedBySchool <- cbind(
+ MixedRespMCMC["RP"][["RP2_var_Intercept_1"]]) / 
+ (MixedRespMCMC["RP"][["RP1_var_Intercept_1"]]) * 100,
+ MixedRespMCMC["RP"][["RP2_var_Intercept_2"]]) / 
+ (MixedRespMCMC["RP"][["RP1_var_bcons_2"]]) * 100)
R> colnames(ExplainedBySchool) <- c("english", "behaviour")
R> ExplainedBySchool
```

```
english behaviour
[1,] 12.24974 6.125371
```

Note, as reflected in the output returned, that the DIC is currently not available for mixed response models fitted in MLwiN.

16. Running simulations / fitting multiple models

Whilst MLwiN can be run via a macro language and the command line, the R environment is particularly well-suited to requesting the estimation of a series of models, and the efficient post-processing of their results.
For example, simulation studies can be a useful tool for researchers wishing to investigate hypotheses such as how sensitive, or biased, their model estimates are to the different estimation methods which could be used to derive them. We’ll illustrate this with an example based on Browne and Draper (2000, 2006), and also Chapter 8 of Browne (2012), comparing Bayesian and likelihood-based methods of estimating multilevel models with very few level 2 units. Here we simulate a series of datasets from ‘true’ parameter values, and then fit each dataset to a model via the estimation methods of interest, before investigating how sensitive the model estimates are with regard to the methods used to derive them (see demo(MCMCGuide08) for an example of conducting such a study using parallel processing).

First we generate a dataset of 108 pupils, evenly-distributed across 6 schools; we’ll fit a variance components model, and so will also generate a constant (cons) for the intercept, and we also specify the structure of our model (the variable resp will be generated later):

```r
R> set.seed(1)
R> pupil = 1:108
R> school = c(rep(1, 18), rep(2, 18), rep(3, 18), rep(4, 18), rep(5, 18),
+ rep(6, 18))
R> F10 = resp ~ 1 + (1 | school) + (1 | pupil)
```

Next we will fit two models – one via Bayesian MCMC methods and one via IGLS (accepting R2MLwiN’s default settings) – to each of 100 simulated datasets in which the response variable (resp) is generated anew from the pupil- and school-level variances (40 and 10, respectively) and fixed effects ($\beta_0 = 30$) for each dataset; the estimates from each model are then compiled (in IGLS_array and MCMC_array, with some additional information collected from the MCMC chains, namely the median estimate of the level 1 and levels 2 variances, and also whether the ‘true’ parameter values fall within the 95% credible (i.e., coverage) intervals):

```r
R> ns <- 100
R> IGLS_array = MCMC_array = array(, c(3, 2, ns))
R> MCMC_median <- data.frame(RP2_var_Intercept = rep(0, ns),
+ RP1_var_Intercept = rep(0, ns))
R> CounterMCMC <- rep(0, 3)
R> Actual <- c(30, 10, 40)
R> for(i in 1:ns){
+ u_short <- rnorm(6, 0, sqrt(Actual[2]))
+ u <- rep(u_short, each = 18, len = 108)
+ e <- rnorm(108, 0, sqrt(Actual[3]))
+ resp <- Actual[1] * 1 + u + e
+ simData <- data.frame(cbind(pupil, school, resp))
+ simModelIGLS <- runMLwiN(Formula = F10, data = simData)
+ IGLS_array[,i] <- cbind(coef(simModelIGLS), diag(vcov(simModelIGLS)))
+ simModelMCMC <- runMLwiN()
+ Formula = F10, estoptions = list(EstM = 1), data = simData)
+ MCMC_array[,i] <- cbind(coef(simModelMCMC), diag(vcov(simModelMCMC)))
+ MCMC_median[i, ] <-
+ c(median(simModelMCMC["chains"]["RP2_var_Intercept"])),
}```
Having now obtained the information we need from each estimation method, for each of the 100 simulated datasets, we now need to summarise our results; here we calculate the percentage bias of the average estimate away from the ‘true’ parameter value, together with the percentage interval coverage (for IGLS we use central Gaussian (mean ± 1.96 × sd) intervals, but for alternative intervals see Browne and Draper (2006)):

```r
R> aa <- sapply(1:ns, function(x) na.omit + (stack(as.data.frame(IGLS_array[, , x])))$values)
R> counterIGLS <- rep(0, 3)
R> for (i in 1:ns) {
 + if (Actual[1] > aa[1, i] - 1.96 * sqrt(aa[4, i]) &
 + Actual[1] < aa[1, i] + 1.96 * sqrt(aa[4, i])) {
 + }
 + if (Actual[2] > aa[2, i] - 1.96 * sqrt(aa[5, i]) &
 + }
 + if (Actual[3] > aa[3, i] - 1.96 * sqrt(aa[6, i]) &
 + Actual[3] < aa[3, i] + 1.96 * sqrt(aa[6, i])) {
 + }
 + }
R> Percent_interval_coverage <- (counterIGLS / ns) * 100
R> Mean_across_simus <- round(c(mean(aa[1,]), mean(aa[2,]), mean(aa[3,])), 2)
R> Percent_bias <- round(-100 * (1 - Mean_across_simus / Actual), 2)
```
R> IGLS_results <- cbind(Mean_across_simus, Actual, Percent_bias, + Percent_interval_coverage)
R> rownames(IGLS_results) <- c("beta0", "sigma2_u", "sigma2_e")
R> Percent_interval_coverage <- (CounterMCMC / ns) * 100
R> bb <- sapply(1:ns, function(x) na.omit(+ (stack(as.data.frame(MCMC_array[,x])))$values)
R> Mean_across_simus <- round(c(mean(bb[1,]), mean(bb[2,]), mean(bb[3,])), 2)
R> Percent_bias <- round(-100 * (1 - Mean_across_simus / Actual), 2)
R> MCMC_results <- cbind(Mean_across_simus, Actual, Percent_bias, + Percent_interval_coverage)
R> rownames(MCMC_results) <- c("beta0", "sigma2_u", "sigma2_e")
R> cat("Simulation results using IGLS\n"); IGLS_results

Simulation results using IGLS
Mean_across_simus Actual Percent_bias Percent_interval_coverage
beta0 29.78 30 -0.73 87
sigma2_u 8.12 10 -18.80 77
sigma2_e 40.70 40 1.75 93

R> cat("Simulation results using MCMC\n"); MCMC_results

Simulation results using MCMC
Mean_across_simus Actual Percent_bias Percent_interval_coverage
beta0 29.57 30 -1.43 94
sigma2_u 16.20 10 62.00 91
sigma2_e 42.14 40 5.35 96

Whilst conducting fewer simulations (with fewer chain iterations too) than Browne and Draper (2006), the results are still largely in keeping with their's, indicating little bias for the intercept, slight bias (particularly via MCMC) for the level 1 variance, and considerable bias for the level 2 variance. Furthermore, the interval coverages tend to be better for MCMC, and this is especially so for the level 2 variance. Incidentally, (Browne and Draper 2006) found that the median estimate when specifying $\Gamma(\epsilon, \epsilon)$ priors has considerably less bias, as we find here:

R> Mean_across_simus <- round(c(mean(MCMC_median$RP2_var_INTERCEPT), + mean(MCMC_median$RP1_var_INTERCEPT)), 2)
R> Actual <- tail(Actual, -1)
R> Percent_bias <- round(-100 * (1 - Mean_across_simus / Actual), 2)
R> Percent_interval_coverage <- tail(Percent_interval_coverage, -1)
R> MCMC_results2 <- cbind(Mean_across_simus, Actual, Percent_bias, + Percent_interval_coverage)
R> rownames(MCMC_results2) <- c("sigma2_u", "sigma2_e")
R> cat("Simulation results based on median MCMC estimates\n"); MCMC_results2

Simulation results based on median MCMC estimates
Mean_across_simus Actual Percent_bias Percent_interval_coverage
sigma2_u 10.21 10 2.10 91
sigma2_e 41.53 40 3.83 96
17. Other models and features

In addition to the models covered in the examples above, \textit{MLwiN}, via \textit{R2MLwiN}, has a number of other useful features; examples of many of these can be found in \textit{R2MLwiN}’s demos (see Section 1.3), e.g., (with relevant demo in parentheses): adjusting for measurement errors in predictors (MCMCGuide14), fitting multiple membership multiple classification (MMMC) models (MCMCGuide16), fitting spatial data models (MCMCGuide17), creating imputations for multilevel datasets with missing values (MCMCGuide18), modeling autoregressive residual structures at level 1 (MCMCGuide19), and multilevel factor analysis (MCMCGuide20).

18. Conclusions

This paper has introduced \textit{R2MLwiN}, a new package which calls the multilevel modeling software \textit{MLwiN} from within the R environment. As such, it offers a route other than the GUI, or direct authoring of macros, to run \textit{MLwiN}, enabling users to benefit from working within the R environment (e.g., to parsimoniously fit multiple models, and compile and analyse the results returned using the many statistical and graphical functions available in R). In addition, \textit{R2MLwiN} offers functionality not commonly-supported by existing R packages, such as modeling complex level 1 variance, multiple membership models, multivariate response models, writing (and running) \textit{BUGS} models with automatically-generated model code and IGLS starting values, and \textit{MLwiN}’s interactive equation and graphics windows available via its GUI, which can be opened from R (if running via Windows or in \textit{Wine} (Wine Development Team 2015) on other platforms). As a means to call \textit{MLwiN} externally \textit{R2MLwiN} joins the recently-developed programme \textit{Stat-JR} (Charlton et al. 2013), (which interoperates with a large range of statistical software programmes) and the \textit{Stata} package (StataCorp 2015) \textit{runmlwin} (Leckie and Charlton 2013). This work therefore has the potential to be of benefit to a range of research communities, offering an accessible means of addressing a common research problem: namely modeling datasets with multilevel structures.

19. Acknowledgements

This research was funded mainly under the e-Stat project, a quantitative node of the UK Economic and Social Research Council (ESRC)’s National Centre for E-Social Science and Digital Social Research programmes (grant number RES-149-25-1084), and latterly under the ESRC-funded research grants LEMMA 3 (RES-576-25-0032) and ‘The use of interactive electronic books in the teaching and application of modern quantitative methods in the social sciences’ (ES/K007246/1).

We thank two anonymous referees for their constructive comments on the manuscript and the \textit{R2MLwiN} package, and also Dr Rebecca Pillinger for her helpful remarks on the package, all of which have helped improve both.

References


**Affiliation:**
Zhengzheng Zhang
c/o Centre for Multi-level Modelling
Graduate School of Education
University of Bristol
35 Berkeley Square, Bristol, BS8 1JA, United Kingdom
E-mail: zhengzhengzhang@gmail.com
URL: www.bristol.ac.uk/cmm/software/r2mlwin/

*Journal of Statistical Software* published by the American Statistical Association

Volume VV, Issue II

MMMMYYYY Submitted: yyyy-mm-dd

MMMMYYYY Accepted: yyyy-mm-dd