Processing and properties of aligned carbon nanotube/polymer matrix composites

Toshio Ogasawara, and Sook-Young Moon
Japan Aerospace Exploration Agency (JAXA), Japan

Yoku Inoue, and Yoshinobu Shimamura
Shizuoka University, Japan

Terumasa Tsuda, and Nobuo Takeda
The University of Tokyo, Japan

Kengo Nakamoto, and Takeshi Ogawa
Aoyama-Gakuin University, Japan

UK-Japan Workshop on Composites
Queens Building University of Bristol, 25 March 2013

Outline

• Introduction
 – Previous work on aligned CNT/epoxy composites in our group
 – Objectives

• Damage progression behavior and strength
 – TEM observations of composites subjected to tensile stress
 – Critical CNT length and CNT strength

• Elastic modulus
 – CNT orientation angle distribution
 – Estimation of elastic modulus using Eshelby’s theory

• Conclusion
Forest-drawn CNT sheet

The technology to produce horizontally aligned CNT sheets from a vertically aligned CNT forest was proposed in 2004. The forest-drawn CNT sheets were particularly promising materials for use as a reinforcement of polymer because they are highly oriented, high volume fraction, and free-standing.

Synthesis method of CNT forest

A simple and efficient synthesis method for producing vertically aligned long MWCNTs was proposed by Prof. Inoue in 2008. The MWCNTs with length exceeding 1 mm were grown on a bare quartz substrate using conventional thermal CVD with single gas flow (acetylene) for 20 min. Iron chloride powders are used as precursor of a catalyst.

How to make forest-drawn CNT sheets

In addition to such a high growth rate, the CNT forest is spinnable. Well-aligned MWCNT sheets are produced easily from the MWCNT forest by pulling it out to horizontal direction.

Scanning electron micrographs presenting CNT forest, and horizontally aligned CNT sheet

- Diameter 50–70 nm, Length 1.3 mm, Aspect ratio > 10,000
- Most of the CNTs are aligned, waviness and entanglement are also visible. The CNT sheets are not perfectly aligned.
Processing of CNT/epoxy prepreg

Stacked CNT sheet
(12.5 mm width, 45 mm length)

B-stage un-cured epoxy resin film with release paper (30g/m², 25µm)
Bisphenol-A type epoxy, novolac type epoxy, and an aromatic diamine curing agent

CNT sheet was put on a PTFE sheet and covered with epoxy resin film with release paper.

Resin impregnation (90°C for 3 min)

CNT/Epoxy prepreg

CNT/Epoxy prepreg had good drapability and tackiness. CNT loading was well controlled by changing the CNT areal weight.

The prepreg sheet was cured at 130°C for 1.5 h between steel plates in an oven, yielding a film specimen.

Fracture surfaces of CNT/epoxy composites

Comp #3, 21.4 vol.%

No visible void or resin-rich region was observed. Epoxy resin is well penetrated between CNTs. The SEM observations demonstrate that the prepreg process contributes to the high quality of the CNT/epoxy composites.
The composites exhibit much higher elastic modulus and UTS as compared with randomly oriented CNT composites. Quantitative discussions on the elastic modulus and tensile strength of the CNT/epoxy composites have not been carried out.

Objectives

- Observations of damage progression under tensile loading using a TEM
- Investigation of the effect of CNT orientation angle distribution on the elastic modulus (Young’s modulus)
- The direction for improving the mechanical property in near future.
Outline

• Introduction
 – Previous work on aligned CNT/epoxy composites in our group
 – Objectives

• Damage progression behavior and strength
 – TEM observations of composites subjected to tensile stress
 – Critical CNT length and strength estimation

• Elastic modulus
 – CNT orientation angle distribution
 – Estimation of elastic modulus using Eshelby theory

• Conclusion

Nano-scopic damage observations

• Composite material
 – CNT (8 vol.%)/Epoxy
 – Thickness 30 μm, E=20 GPa

• Tensile stress
 – 0, 45, 95, and 110 MPa

![Graph showing stress-strain relationship for CNT/epoxy composites and epoxy.](image)

FE-TEM (JEM-2100F; JEOL, Japan)

FIB (JEM-9320; JEOL)
Sample preparation (FIB milling)

After tensile loading, each sample was cut into a rectangular piece (5 mm long, 1.5 mm wide) and set on a TEM tip-on holder.

Thin samples for TEM observations were prepared using an FIB.

TEM observation area

2.8 x 3.5 μm, 12-15 /each specimen

The machined area is approximately 30 μm wide, 4 μm deep, and 100 nm thick.

Damage progression (0 MPa)
Damage progression (45 MPa)

At the first loading step (0–45 MPa), the CNT breaks around metallic catalyst are mainly observed. The CNT length is estimated to be 150-200µm, which is long enough as reinforcement. The CNT breaks do not affect the composite tensile strength and elastic modulus.

Damage progression (95 MPa)

At the second loading step (45–95 MPa), interfacial debondings around abnormally grown structures are observed. On the other hand, the fracture of CNTs never proceeded. Debonding does not affect the mechanical properties significantly.
Damage progression (95-110 MPa)

At the final loading step (95–110 MPa), multiple failures of CNT in the matrix, and interfacial debonding along the ordered CNT are clearly observed.

Appearance of CNT failure is sword-in-sheath type. This suggests that the strength of the most outer layer is critical.

Critical length of CNT

- TEM observation
 - Observed CNT length 1.12 mm
 - Number of CNT break (@ 110 MPa) 25

- SEM observation (Pull-out length)
 - Pulled out length of CNT; 1.05 ~ 7.4 µm
 - Critical CNT length; 4.2 ~ 29.6 µm

\[L_{cr} = 4L_{exposed} \]
CNT strength estimation

- Interfacial shear strength (IFSS) between CNT and epoxy (different composite system)
 - Pristine interface \sim 20 \text{ MPa}
 - Debonded interface \sim 5 \text{ MPa}

T. Tsuda, T. Ogaswara et al (2011)

\[\frac{L_{cr}}{2} = \frac{\sigma R}{2\tau} \]

Estimated CNT strength

<table>
<thead>
<tr>
<th></th>
<th>Critical length (TEM) 44.6 \mu m</th>
<th>Critical length (SEM) 16.4 \mu m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect ratio</td>
<td>900</td>
<td>330</td>
</tr>
<tr>
<td>Pristine interface (20 MPa)</td>
<td>34.2 GPa</td>
<td>12.6 GPa</td>
</tr>
<tr>
<td>Debonded interface (5 MPa)</td>
<td>8.5 GPa</td>
<td>3.1 GPa</td>
</tr>
</tbody>
</table>

IFSS evaluation using nano-pullout method

Tensile test of CNT

\[F = k\Delta x \]
\[\sigma = \frac{F}{S} \]

T. Tsuda and F. Deng, University of Delaware 2012
Outline

- Introduction
 - Previous work on aligned CNT/epoxy composites in our group
 - Objectives
- Damage progression behavior and strength
 - TEM observations of composites subjected to tensile stress
 - Critical CNT length and strength estimation
- Elastic modulus
 - CNT orientation angle distribution
 - Estimation of elastic modulus using Eshelby theory
- Conclusion

Evaluation of CNT orientation angle

- Composite material
 - CNT (13 vol.%) / Epoxy, E=30 GPa
- Each SEM photograph was divided every 2 µm to material axis direction.
- Orientation angle of each CNT in the gauge length (2 µm) was measured.
- Number of samples were approximately 500.

![SEM photograph](image)

Material axis
Evaluation of CNT orientation angle

- Orientation angle is well fitted to normal distribution.
- The standard deviation; 31.8 deg.

Histogram of CNT orientation angle

Normal distribution plot

Eshelby, Mori-Tanaka theory

- Eshelby, Mori-Tanaka theory

\[
\begin{align*}
D &= v_0 D_0 + \sum_{r=1}^{n} v_r \left(D_r - D_0 \right) \\
&= v_0 D_0 + \sum_{r=1}^{n} v_r \left(D_r A_r \right) \\
&= v_0 D_0 + \sum_{r=1}^{n} v_r \left(D_r A_r \right) \\
&= v_0 D_0 + \sum_{r=1}^{n} v_r \left(D_r A_r \right) \\
A_r &= \left[I + S_r D_0 \right]^{-1}
\end{align*}
\]

- In-plane CNT orientation angle distribution (normal distribution)

\[
\{ D_{ij} \} = \int_{-\pi}^{\pi} D_{\text{normal}} l_m l_n l_{l_1} l_{l_2} n(\phi) d\phi
\]

\[
n(\phi) = \frac{1}{P(\sigma)} \exp \left(-\frac{\phi^2}{2\sigma^2} \right) \quad P(\sigma) = \int_{-\pi}^{\pi} \exp \left(-\frac{\phi^2}{2\sigma^2} \right) d\phi
\]

Notation:
- D: Stiffness tensor
- S: Eshelby’s tensor
- v: Volume fraction
- I: Unit tensor
- A: Concentration tensor
- n(f): Orientation distribution function (normal distribution)
- \(\sigma \): Standard deviation of \(\phi \)
- \(\phi \): Orientation angle
- \(l_{ij} \): Angle transformation matrix

Subscript notation:
- 0: matrix
- r: r-th component in matrix
Numerical results (1)
Effect of elastic modulus of CNT

- Aspect ratio; 300 (D=50 nm, L= 15 μm)
- Standard deviation of orientation angle distribution; 31.8 deg.

Young’s modulus of MWCNT (Literature data)

<table>
<thead>
<tr>
<th>Literature</th>
<th>Method</th>
<th>Young’s modulus</th>
</tr>
</thead>
</table>

The Young’s modulus of MWCNT; > 800 GPa
Effective CNT length

- All of the carbon nanotubes are not straight within the critical CNT length (16.4 μm).
- The CNT orientation angles were measured every 2 μm in this study.
- The effective CNT length for evaluating the elastic modulus should be 2 μm (aspect ratio of 50).

Numerical result (2)
Effect of critical CNT length (aspect ratio)

- Young’s modulus of MWCNT; 1.19 TPa (Lu et al, phy. Rev. Lett., 1997)
- Standard deviation of orientation angle distribution; 31.8 deg.

The best fit aspect ratio; 40 ~ 50 (L = 2 ~ 2.5 μm)

<table>
<thead>
<tr>
<th>Aspect Ratio (AR)</th>
<th>Stiffness (GPa)</th>
<th>Poisson’s ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E₁</td>
<td>E₂</td>
</tr>
<tr>
<td>CNT</td>
<td>1190</td>
<td>410</td>
</tr>
</tbody>
</table>

Numerical result (3)
Effect of orientation angle distribution

![Graph showing Young's modulus of composite vs. SD of orientation angle distribution, deg]

(Vf=30 vol.%)

E=1.19 TPa
AS = 40 (L=2 µm)

Improvement of CNT orientation angle scattering is effective to increase the elastic modulus of composite.

70 GPa → 140 GPa !?

Conclusion

- Multiple CNT breaks and interfacial debondings were clearly observed under tensile load before the final failure.
- Critical CNT length was estimated to be approximately 16 µm from pullout length, and 45 µm from direct TEM observation.
- The strength of CNT/epoxy composites was mainly determined by tensile strength of the most outer layer.
- The strength of the CNT was estimated as 3-13 GPa using the critical CNT length (16 µm) and the IFSS (5-20 MPa).
- The Young’s modulus of the CNT/epoxy composites was strongly affected by CNT orientation angle distribution.
- The estimated Young’s modulus of CNT is approximately 1 TPa using the effective gauge length (2 µm) and the standard deviation of orientation angle distribution (31.8 deg).