Fundamental experimental studies yield understanding of physical and mechanical behaviour that provides the foundation for analysis methods to predict performance, and tools to design and manufacture optimal structures. Select from the options above for an overview of work undertaken in ACCIS under this theme.
With the use of increasingly large composite components on aircraft comes the need for reliable design guidelines to be able to extrapolate data from laboratory tests with confidence to full size components, thus reducing the need for full-scale testing. Notches or holes are common in aircraft components for joints, access, or to allow wires to run through solid pieces and cause significant stress concentrations. Experimental and numerical studies allow us to understand the mechanisms responsible for failure from notches and to develop models to predict the resulting scaling effects.
3D weaving provides a method for adding through thickness reinforcement to composite components. It additionally creates the ability to produce net-shape pre-forms, thus reducing manufacturing and assembly costs. In order to use such materials in engineering designs it is necessary to understand the effect of the reinforcement on mechanical performance and to characterise the mechanisms by which they fail. It is possible to produce a great variety of weave architectures which can cause considerable variation in properties. On-going work aims to develop a better understanding of the failure mechanisms, methods of testing and numerical modelling.
Optimisation of laminates is made difficult due to the large number of potential lay-ups available and the multi-modal nature of the design space. A two level optimisation strategy is followed whereby continuous gradient based methods are used at the first level and stochastic methods, such as genetic algorithms, in conjunction with lamination parameters are used at the second level. This approach offers great increases in computational efficiency in the optimisation of multipart composites structures.
Anisotropic composites provide a means for weight efficiency by elastic tailoring. By exploiting anisotropy we can create benign stress fields that delay the onset of buckling phenomena. On-going work involves analytical, finite element and experimental investigation of buckling and post buckling. Work on analytical and finite element modelling of prismatic structures with flexural/twist coupling has lead to aeroelastic tailoring. Many laminates exhibit orthotropic properties but are not symmetrically laminated, and are often precluded from design because of their lack of symmetry. Non-standard asymmetric laminates can however sometimes have superior properties.
One major disadvantage of composite materials is that they are very susceptible to impact damage both at low and high velocity. The damage which occurs is complex and is made up of a combination of surface indentation, fibre breakage, matrix cracking, fibre pull-out and delamination. Work at the University of Bristol aims to develop a better understanding of the mechanisms of failure and the most severe loading scenarios. Specifically the effect of impact near a free edge in thick composites has been investigated and on-going work is looking at the effect of open holes at high strain rates. Equipment includes an instrumented drop weight impactor, tensile Hopkinson bar and high speed digital video camera.
The ability to predict failure and mechanical properties is of great importance for structural design of components. New finite element analysis methods and closed form solutions are developed based on a sound understanding of the physical behaviour of materials. These are then carefully validated against experimental results. A successful example is the prediction of scaling and layup effects using only independently measured parameters.
Ideally, composite components should be joined together without having to drill a multiplicity of holes for fasteners – to achieve this we can use adhesive bonded joints. Such joints may also be used to repair composite structures that have been damaged in service, for example by impact events. Bonded structures can be made to carry very heavy loads (our work has designed and manufactured a bonded beam capable of carrying more than 40 tonnes under test). To generate the confidence to use such approaches a significant effort has been applied to understanding failure and crack propagation in bonded joints.
Full field and non-contacting techniques for measuring surface displacements and strains are developing very rapidly. They offer scope to detect damage by the effect it has on the strain distribution, for example cracking around a hole in a composite loaded in tension. They can also be used to measure material properties from tests on specimens with non-uniform stress distributions by processing the results using the virtual fields method. Video extensometry is another powerful technique enabling deformations and strains to be measured remotely in real time by tracking the relative displacement of points on the structure or by post-processing high speed video from impact tests.
ACCIS has significant research activity linked to the development of composite wind and tidal turbine blades. In 2009, we launched a formal partnership with Vestas Wind Systems and we now have a range of projects to linked to structural design, analysis, manufacturing and in-service health monitoring. We are also collaborating with a number of industrial partners on the development of improved materials and design methods for tidal turbine blades, focusing on delamination modelling under static and fatigue loads. These activities directly complement our work with the Aerospace industry and there is strong potential for further knowledge transfer in the future.
Further information: Composite developments in the renewable energy sector (PDF, 2.22MB)
The performance of composites can degrade under repeated application of loads well below those required to cause static failure. Research is investigating fatigue behaviour using highly sensitive acoustic emission techniques and developing tools for life prediction under the variable amplitude loading that arises in service. These tools are for use in initial design, and also in conjunction with structural health monitoring systems to evaluate the remaining life of the structure.
Structural engineering research is primarily concerned with existing capacity of structures and strengthening methods. Bridge strengthening entails adhesive bonding of plates of Advanced Composite Materials such as Carbon Fibre Reinforced Plastic, to the cracked zones of the existing structure. The bond characteristics of the adhesive-to-concrete connection are being investigated and new design procedures developed. Fatigue testing on novel lightweight fibre reinforced road bridge decks and composite reinforcement of masonry panels to reduce earthquake vulnerability are other areas of research.
Internal architectures of modern composites exhibit enormous diversity. The development of new manufacturing methods is primarily driven by two needs: (1) to minimise efforts of draping and laying-up, (2) to optimise composite performance by minimising defects and reinforcing weak directions. There are two major technological trends, which comply with both the needs: (1) creating 3D preforms (e.g. 3D weaving, 3D braiding, structural stitching, tufting), which reinforce out-of plane direction and suppress delaminations, (2) robotic placement of elementary fibre bundles along complex trajectories (e.g. embroidery, automatic tow placement), which optimise in-plane load flow.
Both the technology routes tend to produce peculiar fibrous geometries. In contrast with the composites obtained by laying-up of unidirectional or 2D textile plies, the elementary building blocks (fabric repeat, unit cell) of these composites is comparable to component dimensions or does not exist at all. The latter is particularly explicit for the cases of non-flat component geometries, locations of shape transitions, sharp angles, conjunctions, and the profiles of complex shapes. It leads to an interesting situation when there can be no clear representative volume element (RVE) on the yarn level and hence, the composite effective properties depend on the component shape and loading. These composites are not materials in the traditional sense of homogeneous or homogenizable medium. Hence, the analysis of these materials demands novel modelling approaches and scale separation techniques.
Fundamental experimental studies yield understanding of physical and mechanical behaviour that provides the foundation for analysis methods to predict performance, and tools to design and manufacture optimal structures. Current work ongoing under this theme is detailed below.
With the use of increasingly large composite components on aircraft comes the need for reliable design guidelines to be able to extrapolate data from laboratory tests with confidence to full size components, thus reducing the need for full-scale testing. Notches or holes are common in aircraft components for joints, access, or to allow wires to run through solid pieces and cause significant stress concentrations. Experimental and numerical studies allow us to understand the mechanisms responsible for failure from notches and to develop models to predict the resulting scaling effects.
3D weaving provides a method for adding through thickness reinforcement to composite components. It additionally creates the ability to produce net-shape pre-forms, thus reducing manufacturing and assembly costs. In order to use such materials in engineering designs it is necessary to understand the effect of the reinforcement on mechanical performance and to characterise the mechanisms by which they fail. It is possible to produce a great variety of weave architectures which can cause considerable variation in properties. On-going work aims to develop a better understanding of the failure mechanisms, methods of testing and numerical modelling.
Optimisation of laminates is made difficult due to the large number of potential lay-ups available and the multi-modal nature of the design space. A two level optimisation strategy is followed whereby continuous gradient based methods are used at the first level and stochastic methods, such as genetic algorithms, in conjunction with lamination parameters are used at the second level. This approach offers great increases in computational efficiency in the optimisation of multipart composites structures.
Anisotropic composites provide a means for weight efficiency by elastic tailoring. By exploiting anisotropy we can create benign stress fields that delay the onset of buckling phenomena. On-going work involves analytical, finite element and experimental investigation of buckling and post buckling. Work on analytical and finite element modelling of prismatic structures with flexural/twist coupling has lead to aeroelastic tailoring. Many laminates exhibit orthotropic properties but are not symmetrically laminated, and are often precluded from design because of their lack of symmetry. Non-standard asymmetric laminates can however sometimes have superior properties.
One major disadvantage of composite materials is that they are very susceptible to impact damage both at low and high velocity. The damage which occurs is complex and is made up of a combination of surface indentation, fibre breakage, matrix cracking, fibre pull-out and delamination. Work at the University of Bristol aims to develop a better understanding of the mechanisms of failure and the most severe loading scenarios. Specifically the effect of impact near a free edge in thick composites has been investigated and on-going work is looking at the effect of open holes at high strain rates. Equipment includes an instrumented drop weight impactor, tensile Hopkinson bar and high speed digital video camera.
The ability to predict failure and mechanical properties is of great importance for structural design of components. New finite element analysis methods and closed form solutions are developed based on a sound understanding of the physical behaviour of materials. These are then carefully validated against experimental results. A successful example is the prediction of scaling and layup effects using only independently measured parameters.
Ideally, composite components should be joined together without having to drill a multiplicity of holes for fasteners – to achieve this we can use adhesive bonded joints. Such joints may also be used to repair composite structures that have been damaged in service, for example by impact events. Bonded structures can be made to carry very heavy loads (our work has designed and manufactured a bonded beam capable of carrying more than 40 tonnes under test). To generate the confidence to use such approaches a significant effort has been applied to understanding failure and crack propagation in bonded joints.
Full field and non-contacting techniques for measuring surface displacements and strains are developing very rapidly. They offer scope to detect damage by the effect it has on the strain distribution, for example cracking around a hole in a composite loaded in tension. They can also be used to measure material properties from tests on specimens with non-uniform stress distributions by processing the results using the virtual fields method. Video extensometry is another powerful technique enabling deformations and strains to be measured remotely in real time by tracking the relative displacement of points on the structure or by post-processing high speed video from impact tests.
ACCIS has significant research activity linked to the development of composite wind and tidal turbine blades. In 2009, we launched a formal partnership with Vestas Wind Systems and we now have a range of projects to linked to structural design, analysis, manufacturing and in-service health monitoring. We are also collaborating with a number of industrial partners on the development of improved materials and design methods for tidal turbine blades, focusing on delamination modelling under static and fatigue loads. These activities directly complement our work with the Aerospace industry and there is strong potential for further knowledge transfer in the future.
Further information: Composite developments in the renewable energy sector (PDF, 2.22MB)
The performance of composites can degrade under repeated application of loads well below those required to cause static failure. Research is investigating fatigue behaviour using highly sensitive acoustic emission techniques and developing tools for life prediction under the variable amplitude loading that arises in service. These tools are for use in initial design, and also in conjunction with structural health monitoring systems to evaluate the remaining life of the structure.
Structural engineering research is primarily concerned with existing capacity of structures and strengthening methods. Bridge strengthening entails adhesive bonding of plates of Advanced Composite Materials such as Carbon Fibre Reinforced Plastic, to the cracked zones of the existing structure. The bond characteristics of the adhesive-to-concrete connection are being investigated and new design procedures developed. Fatigue testing on novel lightweight fibre reinforced road bridge decks and composite reinforcement of masonry panels to reduce earthquake vulnerability are other areas of research.
Internal architectures of modern composites exhibit enormous diversity. The development of new manufacturing methods is primarily driven by two needs: (1) to minimise efforts of draping and laying-up, (2) to optimise composite performance by minimising defects and reinforcing weak directions. There are two major technological trends, which comply with both the needs: (1) creating 3D preforms (e.g. 3D weaving, 3D braiding, structural stitching, tufting), which reinforce out-of plane direction and suppress delaminations, (2) robotic placement of elementary fibre bundles along complex trajectories (e.g. embroidery, automatic tow placement), which optimise in-plane load flow.
Both the technology routes tend to produce peculiar fibrous geometries. In contrast with the composites obtained by laying-up of unidirectional or 2D textile plies, the elementary building blocks (fabric repeat, unit cell) of these composites is comparable to component dimensions or does not exist at all. The latter is particularly explicit for the cases of non-flat component geometries, locations of shape transitions, sharp angles, conjunctions, and the profiles of complex shapes. It leads to an interesting situation when there can be no clear representative volume element (RVE) on the yarn level and hence, the composite effective properties depend on the component shape and loading. These composites are not materials in the traditional sense of homogeneous or homogenizable medium. Hence, the analysis of these materials demands novel modelling approaches and scale separation techniques.