Ceramic Matrix Composites-
Manufacturing and Applications in the
Automotive Industry

Diego Bracho García
CMCs Introduction

- Combination of covalent and ionic bonding between metallic and non-metallic elements
- High stiffness, low density, chemical inertness, thermal stability, good insulators, etc.
- Operation over a wide range of temperatures
- Lack of toughness and brittleness → catastrophic failure at low strains (<1%)

Fibre Reinforced Ceramics

- Fibre reinforcements can be used to improve the toughness of a material

- High temp. in processing (and service) of CMC components
 - Temperature resistance
 - Chemical compatibility
 - Thermal expansion mismatch

Processing and Manufacture

<table>
<thead>
<tr>
<th>Conv. Ceramic Consolidation</th>
<th>Cold-Pressing and Sintering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepreg form</td>
<td>Slurry Impregnation and Hot-Pressing</td>
</tr>
<tr>
<td>Porous Preform Infiltration</td>
<td>Melt Infiltration</td>
</tr>
<tr>
<td></td>
<td>Sol-Gel Infiltration</td>
</tr>
<tr>
<td></td>
<td>Polymer Infiltration and Pyrolysis (PIP)</td>
</tr>
<tr>
<td></td>
<td>Reactive Liquid Infiltration</td>
</tr>
<tr>
<td></td>
<td>Directed Oxidation/Nitridation (Lanxide™)</td>
</tr>
<tr>
<td></td>
<td>Reaction Bonding</td>
</tr>
<tr>
<td></td>
<td>Chemical Vapor Infiltration (CVI)</td>
</tr>
</tbody>
</table>

- Liquid/melt
- Gas
Non-Reactive Liquid Infiltration

- Melt Infiltration
 - Single step
 - High density
 - High melting temperatures
 - High viscosities
Reactive Liquid Infiltration

- Liquid silicon infiltration (LSI)
 - First developed in late 1980s
 - Infiltration of C green-body with molten Si
 \[C_{(s)} + Si_{(l)} \rightarrow SiC_{(s)} \]

Gas Infiltration

- Chemical Vapour Impregnation (CVI)

<table>
<thead>
<tr>
<th>Ceramic Matrix</th>
<th>Precursors</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiC</td>
<td>CH_3SiCl_3</td>
</tr>
<tr>
<td>Si_3N_4</td>
<td>$SiCl_4 + NH_3$</td>
</tr>
<tr>
<td>Al_2O_3</td>
<td>$AlCl_3 + CO_2$</td>
</tr>
<tr>
<td>ZrO$_2$</td>
<td>$ZrCl_4 + CO_2$</td>
</tr>
<tr>
<td>TiB$_2$</td>
<td>$TiCl_4 + BCl_3$</td>
</tr>
</tbody>
</table>

- Almost any ceramic can be formed
- Near-net shape
- Slow process (diffusion)
- High cost

Automotive Ind. - Braking systems

- Ceramic composite brakes: C/SiC
 - High braking performance
 - Low weight (2.4 g/cm³)
 - Low wear rate
 - Operating temperatures 1,400°C

- First studied in 1990s, available in 2000s
 - Porsche 911 GT2 (2001) (PCCB)

- 50,000-70,000 CMC brake discs manufactured in 2006
 - SICOM™, BREMBO™, etc.

- High Cost

Automotive Ind.- Clutches

- Porsche Ceramic Composite Clutch (PCCC)
 - Specially designed for the Carrera GT
 - Siliconized carbon fibre fabrics
 - 169 mm- diameter, 3.5 kg
 - One tenth of mass moment of inertia
 - Lower transmission and engine mounting → Lower centre of gravity
 - High cost

Limitations and Future Challenges

- CMCs offer a unique set of properties, especially at high temperatures.

- Progress in manufacturing, such as LSI process, has made CMCs available in areas such as automotive.

- The high costs is the main barrier for further penetration in more cost-sensitive areas.

- Development of new tech. to lower processing temperatures.

- Automation.