Browse/search for people

Publication - Professor Nick Scott-Samuel

    Effect of glass shape on the pouring accuracy of liquid volume

    Citation

    Troy, DM, Attwood, AS, Maynard, OM, Scott-Samuel, NE, Hickman, M, Woods, A & Munafò, MR, 2018, ‘Effect of glass shape on the pouring accuracy of liquid volume’. PLoS ONE, vol 13.

    Abstract

    BACKGROUND: The shape of glassware may exacerbate or counteract biases in perceived volume, which may lead people to misjudge the pouring of alcoholic drinks. The aim of these studies was to investigate the effect of glass shape on the pouring accuracy of liquid volume.

    METHODS: In Study 1, using an online computerised task, participants (n = 211) were asked to pour liquid in glasses in a within-subjects design with factors of glass shape (straight, curved) and requested percentage fullness (10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90%). Curve estimations were carried out to determine if errors followed a linear or non-linear relationship. In Study 2, in a real world experimental study, participants (n = 96) were asked to pour water to the midpoint of pint glasses in a within-subjects design with one factor of glass shape (straight, curved, tulip, inverted). Differences between poured amounts were analysed using one-way repeated measures ANOVA.

    RESULTS: In Study 1, participants under-poured in curved glasses compared to straight glasses at all requested amounts. In Study 2, participants under-poured in curved (p < 0.001, dz = 1.51) and tulip (p < 0.001, dz = 0.59) glasses compared to straight glasses. Findings were inconclusive as to whether or not a difference was present between pourings in inverted and straight glasses. Participants displayed a tendency to under-pour in all glasses relative to requested amounts in both studies.

    CONCLUSIONS: The shape of glassware appears to influence the pouring accuracy of liquid. Pouring in tulip and curved glasses was more inaccurate compared to straight glasses, possibly due to the height of liquid within the glass and volume changing in a non-linear relationship.

    Full details in the University publications repository