Art of Science Competition

Finding aesthetic beauty in experimental work.

Submissions for this year's Art of Science competition are now closed

The Art of Science is an annual competition for scientists to submit images that manage to both be aesthetically pleasing and to convey a scientific message or principle. Entries have varied wildly in the past - take a look at last year's entries below or earlier.

Faculties taking part

This year, in addition to the Faculty of Medical and Veterinary Sciences, we have opened the competition up to all of the Faculty of Science. We welcome entries from all the sciences in this faculty including non-medical and non-veterinary sciences such as chemistry, physics, mathematics, geographical sciences and biological sciences. Be as creative as you like!

Exhibition

The exhibition will be open to the public from 10 am to 3 pm on Friday 21 November - this year we will have a people's choice award so come and vote for your favourite!

School groups also welcome (contact becky.brooks@bristol.ac.uk)

Venue: Life Sciences Building, University of Bristol, 24 Tyndall Avenue, BS81TQ

2013/14 competition gallery

'Exoskeleton and cytoskeleton' by Sylvie Hunt

'Exoskeleton and cytoskeleton'

  • Entrant: Sylvie Hunt
  • Result: Winner (The People's Choice)

Microtubules (green) and actin (red) are two components of the intracellular architectural network, the cytoskeleton that structure cells. This is a butterfly-shape cell displaying various transport vesicles (red & green) in an exoskeleton-like manner.

'My heart will go on' by Rachel Curnock

'My heart will go on'

  • Entrant: Rachel Curnock
  • Result: Winner (The People's Choice

This is an image of a HeLa cell stained for actin (grey) and the cell nucleus (red). While imaging I stumbled across this cell with an unusual heart shaped nucleus. HeLa cells are the oldest and most commonly used immortal cell line; this immortality is reflected in the title "My Heart Will Go On".

'Let's circulate' by Helen Weavers

'Let's circulate'

  • Entrant: Helen Weavers
  • Result: Winner (The People's Choice)

This microscopic fluorescent image of the fruit fly's circulatory system shows how the tubular heart (green) is suspended within the body by fan-like muscles radiating outwards. Special excretory organs (red) that lie along the heart capture toxins from the body fluids as they circulate. The genetic material is labelled in blue.

'Staring down the barrel of a gun' by Martin Cheung

'Staring down the barrel of a gun'

  • Entrant: Martin Cheung
  • Result: Winner

The type III secretion system (T3SS) is a molecular syringe that many pathogenic bacteria use to cause disease. Reconstructed in three dimensions using electron microscopy.

'Maze towers' by Dylan Bergen

'Maze towers'

  • Entrants: Dylan Bergen
  • Result: Winner

Picture generated by Scanning Electron Microscopy (SEM) of the zebrafish eye epithelium suffering secretion defects from inside to outside of the cell. Large proteins, such as collagen, produced inside the cell are not able to move out and is stocked up under the cell membrane. This forms a tower within the characteristic maze pattern of the zebrafish skin, which streamlines the fish.

'DNA etching pop art' by Jennifer Allen and Rachel Curnock

'DNA etching pop art'

  • Entrants: Jennifer Allen and Rachel Curnock
  • Result: Winners

DNA gels are a routine technique used in biochemistry to separate DNA fragments by their size. We took the idea of visualizing DNA on a gel and etched the familiar shape of the DNA double helix into the surface. We 'loaded' the gel with a DNA and fluorescent ethidium bromide mix to produce the DNA helix made of DNA!

'Spiral cell divisions in a sea snail' by Anna Franz

'Spiral cell divisions in a sea snail'

  • Entrant: Anna Franz
  • Result: Runner up

This crepidula fornicata (sea snail) embryo is undergoing spiral cleavage from 4 to 8 cells. The DNA is shown in blue and the mitotic spindle in yellow.

'Two hippocampal slices' by Marion Mercer

'Two hippocampal slices'

  • Entrant: Marion Mercer
  • Result: Runner up

Two 400 µM thick slices of live brain tissue in an electrophysiology recording chamber. This set-up enables us to record the electrical activity of neurons, in this case from the hippocampus, a structure thought to be involved in learning and memory.

'Vesicle trafficking above Clifton Suspension Bridge' by Sylvie Hunt

'Vesicle trafficking above Clifton Suspension Bridge'

  • Entrant: Sylvie Hunt
  • Result: Runner up

An artistic representation of a hot air balloon (transport vesicle & Golgi apparatus).

'Rainbow retina' by Sasha Woods

'Rainbow retina'

  • Entrant: Sasha Woods
  • Result: Runner up

The rod and cone photoreceptors are not the only cells in the retina required for visual processing; here a section of retina is stained to highlight amacrine, bipolar and ganglion cells which also play important roles.

'Shot neuron' by Laura Murray

'Shot neuron'

  • Entrant: Laura Murray
  • Result: Runner up

A stellate cell from the mouse somatosensory cortex, which receives information about whisker movement, has been fluorescently labeled. You can see the pipette tip patched on to the cell body with all the cells projections, including the tiny spines, clearly visible.

'Hidden diatoms' by Laura Senior

'Hidden diatoms'

  • Entrant: Laura Senior
  • Result: Runner up

Diatoms are ubiquitous algae that sheath themselves in a silica shell. This 'glass house' can be isolated by digesting diatoms with hydrogen peroxide. This electron micrograph shows individual diatom shells trapped within the digested organic matrix. One diatom is in the centre, how many others can you spot?