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Note

When working through this manual, you may notice some minor discrepan-
cies between the results you get and the screenshots presented here. This is
due to two changes that have been made to the software between the Beta
version used to create the screenshots in the manual and the current version.
The first affects the −2× log(likelihood) values. The version used to create
the screenshots gives a slightly different value to the current version and to
MLwiN version 2.02 in some cases. The second is that an improvement to the
estimation procedure in the current version may lead to small improvements
in some parameter estimates when using (R)IGLS. The version used to create
the screenshots gives identical parameter estimates to MLwiN version 2.02.

The differences in both the −2 × log(likelihood) values and the parameter
estimates shown in the screenshots in this manual compared to the values
produced by the current version of the software are extremely small. All
−2× log(likelihood) values for multilevel models agree to 7 significant digits
and all −2 × log(likelihood) values for single level models agree to at least
5 significant digits. All differences between parameter estimates are within
the specified tolerance for the iterative procedure. We therefore decided
not to replace the screenshots with screenshots generated by the current
version of MLwiN. If you are using the current version of MLwiN, you should
expect to see some extremely small differences in the parameter estimates and
−2 × log(likelihood) values compared to those shown in the screenshots in
this manual; however since the differences are so small there will be no change
in their interpretation.

For more details about these changes and the reasons behind them, see http:
//www.cmm.bristol.ac.uk/MLwiN/bugs/likelihood.shtml
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Introduction

About the Centre for Multilevel Modelling

The Centre for Multilevel Modelling was established in 1986, and has been
supported largely by project grants from the UK Economic and Social Re-
search Council. The Centre has been based at the University of Bristol since
2005. Members of the Bristol team can be found on this page:

http://www.cmm.bristol.ac.uk/team/index.shtml

In addition to the Bristol team, the Multilevel Modelling Fellows are a group
of researchers who meet several times a year to discuss multilevel modelling
issues. A list of current fellows can be found on this page:

http://www.cmm.bristol.ac.uk/team/index.shtml#visfell

Centre contact details:

Centre for Multilevel Modelling
Graduate School of Education
University of Bristol
2 Priory Road
Bristol
BS8 1TX
United Kingdom

e-mail: info-cmm@bristol.ac.uk

T/F: +44(0)117 3310833

Installing the MLwiN software

MLwiN will install under Windows XP or Vista. The installation procedure
is as follows.

xi
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xii INTRODUCTION

Run the file MLwiN.msi from wherever you have downloaded it to, or from
the CD you have been sent. You will be guided through the installation
procedure. Once installed you simply run MLwiN.exe, or for example, create
a shortcut menu item for it on your desktop.

MLwiN overview

MLwiN is a development from MLn and its precursor, ML3, which provided
a system for the specification and analysis of a range of multilevel models.
MLwiN provides a graphical user interface (GUI) for specifying and fitting a
wide range of multilevel models, together with plotting, diagnostic and data
manipulation facilities. The user can carry out tasks by directly manipulating
GUI screen objects, for example, equations, tables and graphs.

The computing module of MLwiN is effectively a somewhat modified version
of the DOS MLn program, which is driven by a series of commands and
operates in the background. Users typically will set about their modelling
tasks by directly manipulating the GUI screen objects. The GUI translates
these user actions into MLn commands, which are then sent to the computing
module. When the computing module has completed the requested action all
relevant GUI windows are notified of this and redraw themselves to reflect
the updated system state. For some more complex models and tasks, for
which there are currently no GUI structures available, the user must enter
commands directly in the Command interface window. Any commands
issued by the GUI are also recorded in this window. All these commands are
fully described in the MLwiN Help system (see below).

It is assumed that you have a working knowledge of Windows applications.
The MLwiN interface shares many features common to other applications
such as word processors and some statistical packages. Thus, file opening
and saving is standard, as is the arranging and copying of windows to the
clipboard, and using menus and dialogue boxes.

The data structure is essentially that of a spreadsheet with columns denoting
variables and rows corresponding to the lowest level units in the hierarchy.
For example in the data set described in Chapter 2, there are 4059 rows, one
for each student, and there are columns identifying students and schools and
containing the values of the variables used in the analysis. By default the
program allocates 1500 columns, 150 fixed and 150 random parameters and 5
levels of nesting. The worksheet dimensions, the number of parameters and
the number of levels can be allocated dynamically.

For your own data analysis, typically you will have prepared your data in
rows (or records) corresponding to the cases you have observed. MLwiN
enables such data to be read into separate columns of a new worksheet, one
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column for each field. Data input and output is accessed from the File menu.

Other columns may be used for other purposes, for example to hold frequency
data or parameter estimates, and need not be of the same length. Columns
are numbered and can be referred to either as c1, c17, c43 etc., or by name
if they have previously been named using the NAME feature in the Names
window. MLwiN also has groups whose elements are a set of columns. These
are fully described in the MLwiN Help system.

As well as the columns there are also boxes or constants, referred to as B1,
B10 etc. MLwiN is not case-sensitive, so it will be most convenient for you
to type in lower case although you may find it useful to adopt a convention
of using capital letters and punctuation for annotating what you are doing.

Enhancements in Version 2.10

The following features are present in Version 2.10. For documentation, please
see the separate ‘MLwiN v2.10 manual supplement’

Estimation

� Predictions are now available for specified values of the explanatory
variables as well as for the units in the data set

� There is a new method for estimating autocorrelated errors in continous
time

� Ordinal variables can now be entered into the model as orthogonal
polynomials

� There are extra features for data manipulation

� Features have been added to make the running of models from macros
easier, including the ability to control the Equations window from a
macro

Exploring, importing and exporting data

� Basic surface plotting with rotation is now available

� Model comparison tables showing estimates for the various models run
can now be created and exported (for example to Word or Excel)
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� SPSS, Minitab and Stata work files can now be saved and retrieved by
MLwiN

� It is now possible to copy, paste and delete directly from the Names
window

Improved ease of use

� The specification of models has been made easier, in particular, centring
of explanatory variables, entering explanatory variables as polynomials
and modifying explanatory variables already specified

� The open windows in MLwiN now appear as a row of tabs along the
bottom

� Data can now be viewed by selecting variables from the Names window

� Specification of categorical variables has been made easier

� Column descriptors are now available to provide some information
about variables

� MLwiN can now be invoked from the command line

MLwiN Help

The basic reference for MLwiN is provided by an extensive Help system.
This uses the standard Windows Help conventions. Links are underlined
and topics are listed under ‘contents’. There is a principal Help button
located on the main menu and context sensitive buttons located on individual
screens. You can use the ‘index’ to search for a topic or alternatively if you
click on the find tab you can search using keywords for the topic. Navigation
through the Help system involves clicking on hypertext links, or using any
of the options on the Help screen menu bars. You can also use any of the
functions available under ‘options’ on the Windows 95 / NT Help toolbar,
such as printing, changing font size, etc.

Compatibility with existing MLn software

It is possible to use MLwiN in just the same way as MLn via the Command
interface window. Opening this and clicking on the Output button allows
you to enter commands and see the results in a separate window. For certain
kinds of analysis this is the only way to proceed. MLwiN will read existing
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MLn worksheets, and a switch can be set when saving MLwiN worksheets
so that they can be read by MLn. For details of all MLwiN commands see
the relevant topics in the Help system. You can access these in the index
by typing “command name” where name is the MLn command name.

Macros

MLwiN contains enhanced macro functions that allow users to design their
own menu interfaces for specific analyses. A special set of macros for fitting
discrete response data using quasilikelihood estimation has been embedded
into the Equations window interface so that the fitting of these models is
now entirely consistent with the fitting of Normal models. A full discussion
of macros is given in the MLwiN Help system.

The structure of the User’s Guide

Following this introduction the first chapter provides an introduction to mul-
tilevel modelling and the formulation of a simple model. A key innovative
feature of MLwiN is the Equations window that allows the user to specify
and manipulate a model using standard statistical notation. (This assumes
that users of MLwiN will have a statistical background that encompasses
a basic understanding of multiple regression analysis and the corresponding
standard notation associated with that.) In the next chapter we introduce
multilevel modelling by developing a multilevel model building upon a simple
regression model. After that there is a detailed analysis of an educational
data set that introduces the key features of MLwiN. Subsequent chapters
take users through the analysis of different kinds of data, illustrating fur-
ther features of MLwiN including its more advanced ones. The User’s Guide
concludes with two advanced chapters — on cross-classification models and
multiple membership models — which describe how to fit these models using
MLwiN commands.

We suggest that users take the time to work through at least the first tutorial
to become familiar with the software. The Help system is extensive and
provides full explanations of all MLwiN features and also offers help with
many of the statistical procedures. Abridged versions of the tutorials are
also available within the Help system.
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Chapter 1

Introducing Multilevel Models

1.1 Multilevel data structures

In the social, medical and biological sciences multilevel or hierarchically struc-
tured data are the norm and they are also found in many other areas of
application. For example, school education provides a clear case of a system
in which individuals are subject to the influences of grouping. Pupils or stu-
dents learn in classes; classes are taught within schools; and schools may be
administered within local authorities or school boards. The units in such a
system lie at four different levels of a hierarchy. A typical multilevel model
of this system would assign pupils to level 1, classes to level 2, schools to
level 3 and authorities or boards to level 4. Units at one level are recognised
as being grouped, or nested, within units at the next higher level.

In a household survey, the level 1 units are individual people, the level 2 units
are households and the level 3 units, areas defined in different ways. Such a
hierarchy is often described in terms of clusters of level 1 units within each
level 2 unit etc. and the term clustered population is used.

In animal or child growth studies repeated measurements of, say, weight are
taken on a sample of individuals. Although this may seem to constitute a
different kind of structure from that of a survey of school students, it can be
regarded as a 2-level hierarchy, with animals or children at level 2 and the
set of measurement occasions for an individual constituting the level 1 units
for that level 2 unit. A third level can be introduced into this structure if
children are grouped into schools or young animals grouped into litters.

In trials of medical procedures, several centres may be chosen and individual
patients studied within each one. Here the centres become the level 2 units
and the patients the level 1 units.

In all these cases, we can see clear hierarchical structures in the population.

1



2 CHAPTER 1.

From the point of view of our models what matters is how this structure
affects the measurements of interest. Thus, if we are measuring educational
achievement, it is known that average achievement varies from one school
to another. This means that students within a school will be more alike,
on average, than students from different schools. Likewise, people within a
household will tend to share similar attitudes etc. so that studies of, say,
voting intention need to recognise this. In medicine it is known that centres
differ in terms of patient care, case mix, etc. and again our analysis should
recognise this.

1.2 Consequences of ignoring a multilevel struc-

ture

The point of multilevel modelling is that a statistical model explicitly should
recognise a hierarchical structure where one is present: if this is not done
then we need to be aware of the consequences of failing to do this.

In our first tutorial example we look at the relationship between an outcome
or response variable which is the score achieved by 16 year old students in
an examination and a predictor or explanatory variable which is a reading
test score obtained by the same students just before they entered secondary
school at the age of 11 years. The first variable is referred to as “exam score”
and the second as “LRT score” where LRT is short for ‘London Reading
Test’. In the past it would have been necessary to decide whether to carry
out this analysis at school level or at pupil level. Both of these single-level
analyses are unsatisfactory, as we now show.

In a school-level or aggregate analysis, the mean exam score and the mean
LRT score would first be calculated for each school. Ordinary regression
would then be used to estimate a relationship between these. The main
problem here is that it is far from clear how to interpret any relationship
found. Any causal interpretation must include individual pupils, and infor-
mation about these has been discarded. In practice it is possible to find a
wide variety of models, each fitting the data equally well, but giving widely
different estimates. Because of the difficulty of interpretation the results of
such analyses depend on an essentially arbitrary choice of model. An empir-
ical demonstration of this unreliability is given by Woodhouse & Goldstein
(1989), who analyse examination results in English Local Education Author-
ities.

In a pupil-level analysis an average relationship between the scores would
be estimated using data for all 4059 pupils. The variation between schools
could be modelled by incorporating separate terms for each school. This
procedure is inefficient, and inadequate for the purpose of generalisation. It
is inefficient because it involves estimating many times more coefficients than
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the multilevel procedure; and because it does not treat schools as a random
sample it provides no useful quantification of the variation among schools in
the population more generally.

By focusing attention on the levels of hierarchy in the population, multilevel
modelling enables the researcher to understand where and how effects are
occurring. It provides better estimates in answer to the simple questions for
which single-level analyses were once used and in addition allows more com-
plex questions to be addressed. For example Nuttall et al. (1989), using mul-
tilevel modelling, showed that secondary schools varied in the progress made
by students from different ethnic groups: in some schools certain ethnic mi-
nority group children made more progress, in comparison with non-minority
children, than in other schools.

Finally, carrying out an analysis that does not recognise the existence of clus-
tering at all, for example a pupil level analysis with no school terms, creates
serious technical problems. For example, ignored clustering will generally
cause standard errors of regression coefficients to be underestimated. Con-
sider also models of electoral behaviour. Voters are clustered within wards
and wards within constituencies. If standard errors were underestimated it
might be inferred, for example, that there was a real preference for one party
or course of action over another when in fact that preference, estimated from
the sample, could be ascribed to chance. Correct standard errors would be
estimated only if variation at ward and constituency level were allowed for
in the analysis. Multilevel modelling provides an efficient way of doing this.
It also makes it possible to model and investigate the relative sizes and ef-
fects of ward characteristics and of constituency characteristics on electoral
behaviour, as well as that of individual characteristics such as social group.

There is now a considerable literature on multilevel modelling, both theoret-
ical and applied. The tutorial examples will enable the new user to become
familiar with the basic concepts. More detailed discussions and statistical
derivations can be found in the books by Bryk & Raudenbush (1992), Long-
ford (1993) and Goldstein (2003).

1.3 Levels of a data structure

We shall use our exam data to illustrate the fundamental principle of multi-
level modelling: the existence of different levels of variation. For this purpose
schools will be the groups of interest.

We start by introducing some basic terminology and to keep matters simple
we restrict attention to a single response variable and one predictor. We begin
by looking at the data from a single school. In Figure 1.1 the exam scores of
73 children sampled from one of the schools in our sample are plotted against
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the LRT scores for the same children. The relationship is summarised by the
prediction or regression line.

Figure 1.1: Level 1 variation
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Figure 1.2: Level 2 variation in school summary lines
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The lines in Figure 1.2 have different intercepts. The variation between these
intercepts is called level 2 variation because in this example the schools are
level 2 units. The schools are thought of as a random sample from a large
underlying population of schools and ‘school’ is referred to as a random classi-
fication. The individual schools, like the individual pupils, are not of primary
interest. Our interest is rather to make inferences about the variation among
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all schools in the population, using the sampled schools as a means to that
end.

If we regard the lines in Figure 1.2 as giving the prediction of the exam score
for a given LRT score, then it is clear that the differences between schools is
constant across the range of LRT scores. This kind of variation is known as
simple level 2 variation.

If we allow the slopes of the lines to vary as in Figure 1.3, then the differences
between the schools depend on the students’ LRT scores. This is an example
of complex level 2 variation.

Figure 1.3: Complex level 2 variation
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Once again, the main focus of a multilevel analysis is not on the individ-
ual schools in the sample, but on estimating the pattern of variation in the
underlying population of schools. Once this is done it becomes possible to
attempt to explain the pattern in terms of general characteristics of schools,
by incorporating further variables into the model. We can also obtain ‘pos-
terior’ estimates of intercepts and slopes for each school and the procedures
for this will be illustrated in the next chapter.

Before we set up a simple model for the examination data we briefly re-
view the basic statistical theory of multilevel modelling. This section can be
skipped by those familiar with the statistical background.
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1.4 An introductory description of multilevel

modelling

Figure 1.1 provided an illustration of level 1 variation for a single school,
together with a regression line representing a summary relationship between
the exam and LRT scores for the pupils in this school. The technique of
‘ordinary least squares’, or OLS, to produce this relationship is well known
and provided by many computer packages, including MLwiN. Our interest,
however, is to use the variation between all the schools of the sample in order
to make inferences about the variation in the underlying population.

We use the regression line in order to revise some standard algebraic notation.
The ordinary regression relationship for a single school may be expressed as:

yi = a+ bxi + ei (1.1)

where subscript i takes values from 1 to the number of pupils in the school.
In our example yi and xi are respectively the exam and LRT scores for the
ith pupil. The regression relation can also be expressed as:

ŷi = a+ bxi (1.2)

where ŷi is the exam score predicted for the ith pupil by this particular
summary relationship for the school. The intercept, a, is where the regression
line meets the vertical axis and b is its slope. The expression a+bxi is known
as the fixed part of the model.

In equation (1.1), ei is the departure of the ith pupil’s actual exam score
from the predicted score. It is commonly referred to either as an error or
as a residual. In this volume we shall use the latter term. This residual is
that part of the score yi which is not predicted by the fixed part regression
relationship in equation (1.2). With only one school, the level 1 variation is
just the variance of these ei.

Turning now to the multilevel case of several schools which are regarded
as a random sample of schools from a population of schools, we assume a
regression relation for each school

ŷij = aj + bxij (1.3)

Where the slopes are parallel and the subscript j takes values from 1 to the
number of schools in the sample.
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We can write the full model as

yij = aj + bxij + eij (1.4)

In general, wherever an item has two subscripts ij, it varies from pupil to
pupil within a school. Where an item has a j subscript only it varies across
schools but has the same value for all the pupils within a school. And where
an item has neither subscript it is constant across all pupils and schools.

In a multilevel analysis the level 2 groups, in this case schools, are treated
as a random sample from a population of schools. We therefore re-express
equation (1.3) as

aj = a+ uj

ŷij = a+ bxij + uj (1.5)

Where a, with no subscripts, is a constant and uj, the departure of the jth

school’s intercept from the overall value, is a level 2 residual which is the
same for all pupils in school j.

The model for actual scores can now be expressed as:

yij = a+ bxij + uj + eij (1.6)

In this equation, both uj and eij are random quantities, whose means are
equal to zero; they form the random part of the model (1.6). We assume that,
being at different levels, these variables are uncorrelated and we further make
the standard assumption that they follow a Normal distribution so that it is
sufficient to estimate their variances, σ2

u and σ2
e respectively. The quantities

a and b, the mean intercept and slope, are fixed and will also need to be
estimated.

It is the existence of the two random variables uj and eij in equation (1.6)
that marks it out as a multilevel model. The variances σ2

u and σ2
e are referred

to as random parameters of the model. The quantities a and b are known as
fixed parameters.

A multilevel model of this simple type, where the only random parameters
are the intercept variances at each level, is known as a variance components
model. In order to specify more general models we need to adapt the notation
of (1.6). First, we introduce a special explanatory variable x0, which takes
the value 1 for all students.
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This allows every term on the right hand side of (1.6) to be associated with an
explanatory variable. Secondly, we use β0, β1 etc. for the fixed parameters,
the subscripts 0, 1 etc. matching the subscripts of the explanatory variables
to which they are attached. Similarly, we incorporate a subscript 0 into the
random variables and write

yij = β0x0 + β1x1ij + u0jx0 + e0ijx0 (1.7)

Finally, we collect the coefficients together and write

yij = β0ijx0 + β1x1ij

β0ij = β0 + u0j + e0ij (1.8)

Thus we have specified the random variation in y in terms of random coef-
ficients of explanatory variables. In the present case the coefficient of x0 is
random at both level 1 and level 2. The zero subscripts on the level 1 and
level 2 random variables indicate that these are attached to x0.

For the standard model we assume that the response variable is normally
distributed and this is usually written in standard notation as follows

y ∼ N(XB,Ω) (1.9)

where XB is the fixed part of the model and in the present case is a column
vector beginning:

 β0x011 + β1x111
β0x021 + β1x121

· · ·


The symbol Ω represents the variances and covariances of the random terms
over all the levels of the data. In the present case it denotes just the variances
at level 1 and level 2. Equations (1.8) and (1.9) form a complete specification
for our model and MLwiN uses this notation to specify the models that are
described in the following chapters.



Chapter 2

Introduction to Multilevel
Modelling

One aim of this chapter is to demonstrate how multilevel modelling builds
on traditional statistical methods for the comparison of groups where, for
example, the groups may be boys and girls or different schools. We begin with
an overview of standard regression methods for comparing the means of two
or more groups, commonly called analysis of variance (ANOVA) or sometimes
‘fixed effects’ models. We then contrast this approach with multilevel or
‘random effects’ modelling. The chapter also provides a revision of methods
for single-level statistical inference, including Normal tests for comparing
means and likelihood ratio tests, which are also used in multilevel modelling.

The other aim of the chapter is to provide an introduction to the MLwiN
software. The chapter is a tutorial which will take you through procedures for
manipulating data, carrying out descriptive analysis, creating graphs, speci-
fying and estimating ordinary least squares (OLS) regression and multilevel
models, and making inferences.

2.1 The tutorial data set

For illustration here, we use an educational data set for which an MLwiN
worksheet has already been prepared. Usually, at the beginning of an anal-
ysis, you will have to create such a worksheet yourself either by entering the
data directly or by reading a file or files prepared elsewhere. Facilities for
doing this are described in Chapter 8. The data in the worksheet we use
have been selected from a very much larger data set of examination results
from six inner London Education Authorities (school boards). A key aim of
the original analysis was to establish whether some schools were more ‘effec-
tive’ than others in promoting students’ learning and development, taking
account of variations in the characteristics of students when they started

9
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secondary school. The analysis then looked for factors associated with any
school differences found. Thus the focus was on an analysis of examination
performance after adjusting for student intake achievements. As you explore
MLwiN in this and following chapters using the simplified data set you will
also be imitating, in a simplified way, the procedures of the original analysis.
For a full account of that analysis see Goldstein et al. (1993).

The data set contains the following variables:

Variable Description
School Numeric school identifier
Student Numeric student identifier
Normexam Student’s exam score at age 16, normalised to have ap-

proximately a standard Normal distribution. (Note that
the normalisation was carried out on a larger sample, so
the mean in this sample is not exactly equal to 0 and
the variance is not exactly equal to 1.)

Cons A column of ones. If included as an explanatory variable
in a regression model, its coefficient is the intercept. See
Chapter 7.

Standlrt Student’s score at age 11 on the London Reading Test,
standardised using Z-scores.

girl 1 = girl, 0 = boy
schgend School’s gender (1 = mixed school, 2 = boys’ school, 3

= girls’ school)
Avslrt Average LRT score in school
Schav Average LRT score in school, coded into 3 categories (1

= bottom 25%, 2 = middle 50%, 3 = top 25%)
Vrband Student’s score in test of verbal reasoning at age 11,

coded into 3 categories (1 = top 25%, 2 = middle 50%,
3 = bottom 25%)

Note that in order to fit a model with n hierarchical levels MLwiN requires
your data to be sorted by level 1 nested within level 2 within level 3
. . . level n. For example here the data are sorted by students (level 1)
within schools (level 2). There is a sort function available from the Data
Manipulation menu.

2.2 Opening the worksheet and looking at

the data

When you start MLwiN the main window appears. Immediately below the
MLwiN title bar is the menu bar and below it the tool bar as shown:
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These menus are fully described in the online Help system. This may be
accessed either by clicking the Help button on the menu bar shown above
or (for context-sensitive Help) by clicking the Help button displayed in the
window you are currently working with. You should use this system freely.

The buttons on the tool bar relate to model estimation and control, and we
shall describe these in detail later. Below the tool bar is a blank workspace
into which you will open windows. These windows form the rest of the
graphical user interface that you use to specify tasks in MLwiN. Below the
workspace is the status bar, which monitors the progress of the iterative
estimation procedure. Open the tutorial worksheet as follows:

� Select File menu

� Select Open worksheet

� Select tutorial.ws

� Click Open

When this operation is complete the filename will appear in the title bar of
the main window and the status bar will be initialised. The Names window
will also appear, giving a summary of the data in the worksheet:

The MLwiN worksheet holds the data and other information in a series of
columns, as on a spreadsheet. These are initially named c1, c2, . . . , but we
recommend that they be given meaningful names to show what their contents
relate to. This has already been done in the tutorial worksheet that you
have loaded.

Each line in the body of the Names window summarises a column of data. In
the present case only the first 10 of the 1500 columns of the worksheet contain
data. Each column contains 4059 values, one for each student represented in
the data set. There are no missing values, and the minimum and maximum
value in each column are shown.
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Note the Help button on the window’s tool bar. We shall see what some
of the other buttons do later in this manual; the rest are documented in
the MLwiN v2.10 Manual Supplement.

You can view individual values in the data using the Data window as follows:

� On the Data Manipulation menu, select View or edit data

The following window appears:

When this window is initially opened, it always shows the first three columns
in the worksheet. The exact number of values shown depends on the space
available on your screen. You can view any selection of columns, spreadsheet
fashion, as follows:

� Click the View button

� Select columns to view

� Click OK

Alternatively, in version 2.10 you can select the columns you wish to view in
the Names window and then click the Data button at the top — this will
bring up the Data window displaying the selected columns.

You can select a block of adjacent columns either by pointing and dragging
or by selecting the column at one end of the block and holding down ‘Shift’
while you select the column at the other end. You can add to an existing
selection by holding down ‘Ctrl’ while you select new columns or blocks.
Use the scroll bars of the Data window to move horizontally and vertically
through the data, and move or resize the window if you wish. You can go
straight to line 1035, for example, by typing 1035 in the goto line box, and
you can highlight a particular cell by pointing and clicking. This provides a
means to edit data.
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Having viewed your data you will typically wish to tabulate and plot selected
variables, and derive other summary statistics, before proceeding to actual
modelling. Tabulation and other basic statistical operations are available on
the Basic Statistics menu. These operations are described in the Help
system.

2.3 Comparing two groups

Suppose that we wish to examine the relationship between exam performance
at age 16 and gender. We could begin by comparing the mean of normexam
for boys and girls:

� From the Basic Statistics menu, select Tabulate

� Under Output Mode, select Means

� From the drop-down list next to Variate column, select
normexam

� From the drop-down list next to Columns, select girl

� Click Tabulate

You should obtain the following output:

On average, the girls (coded 1) in the sample performed better than the
boys (coded 0), with a mean difference of 0.093 − (−0.140) = 0.233. From
the standard deviations, it can also be seen that boys’ scores are slightly
more variable than girls’. To begin with, we assume that the variability in
exam scores is the same for boys and girls but we will modify this assump-
tion in Chapter 7. The Totals column of the table gives the overall mean
and the pooled standard deviation (sP ), calculated by pooling the standard
deviations for girls and boys.

While this descriptive analysis provides useful information about our sample
of 4059 students, of major interest is the population of students from which
this sample was drawn. To test whether there is a gender difference in the
mean exam score in the population, we would traditionally carry out a two-
sample t-test. In the present case, as in all the examples considered in this
manual, we use ‘large sample’ procedures for significance tests and confidence
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intervals. Thus, instead of a t-test we use a Normal distribution test, and
more generally likelihood ratio tests. The test statistic for comparing the
mean exam score for boys and girls is:

Z =
X̄G − X̄B√
s2P

(
1
nG

+ 1
nB

) =
0.093− (−0.14)√
0.9922

(
1

2436
+ 1

1623

) =
0.233

0.032
= 7.23

This value may be compared with a standard Normal distribution (with mean
zero and standard deviation 1) to obtain a p-value, which is the probability
of obtaining a test statistic as or more extreme than 7.23 if the null hypoth-
esis were true. Although a value as high as 7.23 is clearly significant, we
demonstrate how a p-value may be computed in MLwiN:

� From the Basic Statistics menu, select Tail Areas

� Under Operation, select Standard Normal distribution

� In the empty box next to Value, type the value of the test statistic,
i.e, 7.23

� Click Calculate

You should obtain a value of 2.415e − 013 = 2.415 × 10−13. We double
this value to obtain the p-value for a two-sided test. (A two-sided test is
appropriate since we did not specify a priori the direction of any gender
difference.) The p-value is extremely small, which implies that we are highly
unlikely to obtain a test statistic as extreme as 7.23 if there was in fact no
difference between boys and girls in the population. We therefore conclude
that there is a real population gender difference in the mean of normexam.
We can state that the effect of gender is “statistically significant” at a very
high level of significance.

We could also calculate a confidence interval for the population mean differ-
ence between girls and boys, µG − µB. The 95% confidence interval is

(X̄G − X̄B)± 1.96 SE(X̄G − X̄B) = 0.233± 1.96(0.032) = (0.170, 0.296)

The true mean difference is unlikely to lie outside these limits.

An alternative, but equivalent, approach to the Normal test is to fit a re-
gression model in which we allow normexam to depend on gender. The
regression model is fitted using ordinary least squares and is often referred to
as an OLS model. When the explanatory variable is categorical, the model
is more commonly called an Analysis of Variance (ANOVA) model. As we
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shall see, the advantage of using this approach is that it can be extended to
compare more than two groups and to allow for the effects of other explana-
tory variables. A regression model for comparing the mean of normexam
for boys and girls can be written:

yi = β0 + β1xi + ei (2.1)

where yi is the value of normexam for student i, and xi is their gender
(0 for a boy, and 1 for a girl). The parameter β0 is called the “intercept”,
which in this case represents the overall mean of normexam for boys (i.e,
the mean of y when x=0). The parameter β1 represents the effect of gender,
specifically the difference between boys and girls in the mean of normexam.
The term ei, known as the residual (or error) term, is the difference between
the observed value of normexam for student i and their value predicted by
the regression, i.e, the population mean for students of the same gender.

To specify a regression model in MLwiN:

� From the Model menu, select Equations

The following window will appear:

The Equations window is used to specify statistical models and to view the
results of fitting those models. The Equations window has a number of
different display modes. Two of these modes are simple or general notation.
General notation is the default mode. Since this is an introductory chapter,
we will switch to simple notation in order to make the transition between
single-level models and multilevel models easier to follow.

You can change the appearance of the Equations window in several other
ways using the buttons at the bottom of the window. To have variable names
displayed in place of x, y etc., you can click the Name button. To see variable
names for subscripts instead of i, j etc., you can use the Notation button,
and to show numerical results rather than mathematical symbols you can
click the Estimates button. To request that the full model specification is
displayed, click the + button, and to suppress this specification, click the -
button. We shall demonstrate each of these display modes as we go through
the chapter:

� Click the Notation button on the bottom of Equations window
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The following window will appear:

� Clear the general tick box

� Click the Done button

The Equations window now looks as follows:

Note that y is shown in red indicating that it has not yet been defined.

To define the response variable:

� Click on the red y in the Equations window

The following window will appear:

� From the drop-down list labelled y:, select Normexam

� From the drop-down list labelled N levels:, select 1-i

After you have made a selection for N levels:, the Y variable window expands
to allow you to specify the variable(s) containing identification codes for units
at each level:
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� From the drop-down list labelled level 1(i):, select student

� Click done

Note that level 1 corresponds to the level at which the response measure-
ments were made.

The Equations window now looks like this:

Now we need to add the gender variable:

� Click the Add Term button

This brings up the following window:

This window allows you to add continuous and categorical variables and
higher level interactions between variables. To add the gender variable:

� Select girl from the drop-down list labelled variable

� Click Done

The Equations window will now look like this:

Girl is a categorical variable coded 0 for boys and 1 for girls. A (0,1) variable
such as this is often called a dummy variable. If girl = 0, then from the
regression equation above, the mean of normexam is β0, so β0 is the mean
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for boys. For girls (girl = 1), the mean of normexam is β0 + β1, so β1 is
the girls’ mean minus the boys’ mean. The category coded 0 is called the
reference category.

We can change the display mode so that we view mathematical symbols (e.g.
y, x) rather than variable names. If we click on the Name button in the
Equations window, we see the exact form of equation (2.1).

Note that if you clicked on Name again the display would revert to
variable names. The Name button is called a ‘toggle’ since it allows us
to switch between display modes.

We can also choose the amount of detail in the model specification that we
would like to be displayed in the Equations window. Currently, we have
only the most basic information about the model — the linear regression
equation. Using the + button we can request further details:

� Click the + button on the Equations window twice

The Equations window now displays:

The second line tells us that the residuals are assumed to be Normally dis-
tributed with mean 0 and variance σ2

e .

Note that we could suppress this line in the model specification by clicking
on the − button. Like the Name button the + and − buttons are toggles
which allow us to switch between display modes.

We shall now get MLwiN to estimate the parameters of the model specified
in the previous section. We are going to estimate the two parameters β0
and β1 which constitute the fixed part of the model, and the variance of the
residuals, σ2

e . The residuals and their variance are referred to as the random
part of the model.
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To see the status of the model (i.e, whether it has been fitted or not), we
can use the Estimates button. The Estimates button allows us to choose
between three display modes for the parameters:

1. Mathematical symbols in black typeface (the default)

2. Mathematical symbols with colour indicating whether the model has
been fitted

3. Numerical results after a model fit.

Like the Name, + and − buttons, the Estimates button allows us to toggle
between different display modes. So if we start at the default mode and click
Estimates twice we will see the numerical results, and if we click Estimates
once more we return to the default:

� Click the Estimates button on the Equations window toolbar

You should see highlighted in blue the parameters that are to be estimated.
To begin the estimation we use the tool bar of the main MLwiN window.
The Start button starts estimation, the Stop button stops it, and the More
button resumes estimation after a stop:

� Click Start

The parameters will now turn green, indicating that the model has been
fitted.

� Click Estimates again

You will now see the parameter estimates displayed with their standard errors
in brackets:

Once a model has been fitted, another line appears at the bottom of the
display giving the value for a log-likelihood function. This value can be used
in the comparison of two different models. This will be discussed later in this
chapter.
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From the estimated model, we see that the population mean of normexam
for girls is estimated to be 0.234 units higher than the mean for boys. This
is the difference between the sample means of normexam for girls and boys
which we obtained earlier, i.e, 0.093 − (−0.140) = 0.233. The intercept
estimate of −0.140 corresponds to the sample mean for boys; the predicted
means, which we obtain from the model for each gender, match the sample
means.

Note also that the estimated residual σ̂2
e = 0.985 is equal to the sample

variance of the exam scores after pooling across gender: s2p = 0.9922 =
0.985 (a circumflex over a term means “estimate of”).

The statistical model also provides us with standard errors, which allow us
to make population inferences. In particular, we can test whether there is a
gender difference in the population mean of normexam. The null hypothesis
of no gender difference may be expressed in terms of the model parameters
as H0 : β1 = 0. The test statistic for the Normal test is calculated as
β̂1/SE(β̂1) = 0.234/0.032 = 7.31 which, apart from rounding errors, is very
close to the value obtained from the standard two-sample Normal test.

2.4 Comparing more than two groups: Fixed

effects models

In the last section, we saw how the means of two groups can be compared
using a regression model. Often, however, we wish to compare more than two
groups. For example, we might wish to compare exam performance across
schools. It is straightforward to modify the regression model in equation
(2.1) to allow comparisons among multiple groups.

Before considering the model for comparing more than two groups, we con-
duct a descriptive analysis. To obtain the mean of normexam for each of
the 65 schools in the sample:

� From the Basic Statistics menu, select Tabulate

� Under Output Mode, select Means

� For Variate column, select normexam from the drop-down menu

� For Columns, select school

� Check the box next to Store in, then select C15 from the drop-down
menu directly below

� Click Tabulate
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You will obtain an output window containing the sample size, and mean and
standard deviation of normexam, for each school. The means are stored in
column C15 of the worksheet. When there are a large number of groups to be
compared, as here, it is helpful to display the distribution graphically using
a histogram. To obtain a histogram of the school means of normexam:

� From the Graphs menu, select Customised Graph(s)

� Next to y, select C15 from the pull-down menu

� Under plot type, select histogram

� Click Apply

The histogram should look like the above figure.

From the histogram, we see that there is a large amount of variation in the
mean of normexam across schools.

One way to describe the variation in the mean of normexam across schools
is to fit a regression model, which includes a series of dummy variables for
schools. For each of the 65 schools, we can define a dummy or indicator
variable as follows:

xj = 1 for school j

= 0 otherwise

for j = 1, 2, . . . , 65

In fact, we only need to know a student’s value on 64 of these dummy vari-
ables to determine which school they attended. For example, if we know
that xj= 0 for j= 1, 2, . . . , 64, then we can infer that the student attended
school 65. We therefore only need to include 64 of the dummy variables in
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the model, and the school corresponding to the variable which is left out
is the reference school to which all other schools are compared. If we take
school 65 as the reference, a regression model, which allows for differences
between schools can be written:

yi = β0 + β1x1i + β2x2i + · · ·+ β64x64i + ei (2.2)

where the coefficient βj of dummy variable xj represents the difference be-
tween the mean of normexam for school j and the mean for school 65, and
β0 is the mean for school 65. (Alternatively, we could allow for school effects
by including the full set of 65 dummy variables and excluding the intercept
term β0. This would allow us to recover the school means directly, but such
a model can only be fitted using general notation - see Chapter 7.)

Equation (2.2) represents what is commonly known as an analysis of variance
(ANOVA) model, also known as a fixed effects model for reasons which shall
be discussed in the next section. From (2.2), the mean for school 1 is β0 +β1,
and the mean for school 2 is β0+β2. In general, the mean for school j (j 6= 65)
is β0 +βj. The mean for school 65 (the reference school) is β0. Therefore, the
ANOVA model is more commonly written in the following equivalent form:

yij = β0 + βj + eij

eij ∼ N(0, σ2
e) (2.3)

In this specification, yij is the value of normexam for student i in school j.
j ranges over 1 . . . 65. β65 has a value of 0.

The model in equation (2.2) can be specified in MLwiN as follows:

� In the Equations window, click on the girl (or x1i) term

The following window appears:

� Click delete Term



2.4. FIXED EFFECTS MODELS 23

The next step is to define school as a categorical variable. To do this:

� From the Data Manipulation menu, select Names

� Highlight school, then click on the Toggle Categorical button

� Click the Categories button

A label has been given to each category. By default this will be the column
name concatenated with the category code, i.e. school 1, school 2 etc.

� To accept the defaults, click OK

� Close the Names window

Having defined school as categorical, we can now add the school dummy
variables to the model. By default, the lowest category number of a cate-
gorical variable is taken as the reference category. In the current case this
would contrast schools 2 to 65 with school 1 (the default). We can, however,
change the reference category. To make school 65 the reference school when
we add in the dummy variables, do the following:

� Click on the Add Term button in the Equations window

� In the window that appears, select school from the variable drop-
down list

� Select school 65 from the reference category drop-down list

� Click Done

The Equations window will now show model (2.2):

After clicking on the Start button to run the model, you should obtain the
following results (press the Estimates button to see the numerical results):
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From the model, the predicted mean of normexam for the reference school
65 is β̂0 = −0.309. We can compare this to the sample mean of normexam
in school 65, stored in c15:

� From the Data Manipulation menu, select View or edit data

� Click on View, select C15, and scroll down to row 65

The sample mean for school 65 is indeed −0.309.

The model also provides estimated differences in the population mean of
normexam for any pair of schools. For example, the estimated difference
between schools 1 and 65 (the reference school) is β̂1 = 0.810, and the esti-
mated difference between schools 1 and 2 is β̂1−β̂2 = 0.810−1.092 = −0.282.
These values correspond to the differences between the sample means given
in column C15.

We can test for a difference between any school j and school 65 by carrying
out a Normal test on the difference parameter βj. We can also carry out a
global test for school differences, i.e. a test of the null hypothesis H0 : β1 =
β2 = · · · = β64 = 0 (no differences between schools). Traditionally an F-test
would be used to test for differences between the school means. The test
statistic for an F-test is based on the sum of squares of differences between
schools and the sum of squares of differences between students within schools,
which are usually displayed in the form of an analysis of variance table. To
obtain an ANOVA table in MLwiN:

� From the Basic Statistics menu, select One way ANOVA

� In the Response list, select normexam

� In the Group codes list, select school

This will produce the following output in the Output window:
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The p-value for the test of differences between schools is found by compar-
ing the F-statistic, 12.23, with a F-distribution on 64 and 3994 degrees of
freedom. To do this in MLwiN:

� From the Basic Statistics menu, select Tail Areas

� Under Operation, select F distribution

� In the empty box next to Value, type 12.23

� Next to Degrees of freedom, type 64

� Next to Denominator, type 3994

� Click Calculate

The p-value is very small, so we conclude that there are significant differences
between schools. The ‘within schools mean square’ in the ANOVA table
is 0.848; this is the estimate of the residual variance σ2

e . This estimate is
different from the value of 0.834 given in the Equations window because of
a difference in the estimation algorithm used1. The regression model gives
us estimates of the difference between the means for schools 1 to 64 and
school 65. For example, the difference between school 1 and school 65 is
0.810. Looking at the ANOVA output, which lists school means directly, we
see that we get identical estimates.

For ‘large’ samples, an alternative to the F-test for group comparisons is the
likelihood ratio test. The likelihood ratio test is used to compare two “nested”
models. Two models are considered nested if one model can be thought of
as a restricted form of the other2. To test H0 : β1 = β2 = · · · = β64 = 0, we
compare the following two nested models:

1ANOVA uses restricted iterative generalised least squares (RIGLS), while models spec-
ified via the Equations window use iterative generalised least squares (IGLS) by default.
The difference between IGLS and RIGLS is described in the Help system. The estimation
method can be changed to RIGLS from the Options menu.

2The test can also be extended to non-nested models – see AIC in the Help system.
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Model 1: yi = β0 + ei
Model 2: yi = β0 + β1x1i + β2x2i + · · ·+ β64x64i + ei

Model 1 is a constrained version of Model 2 where β1 = β2 = · · · = β64 = 0.

For each model, we can obtain the value of the likelihood, L, which is the
probability of obtaining the observed data if the model were true.

The likelihood ratio test statistic is computed as−2 logL1−(−2 logL2) which
under the null hypothesis H0 follows a chi-squared distribution on q degrees
of freedom, where q is the difference in the number of parameters between
the two models.

The value of −2 logL2 is given at the bottom of the Equations window and
is 10782.92. If you would like to fit Model 1, you would obtain −2 logL1 =
11509.36. The likelihood ratio statistic is 11509.36−10782.92 = 726.44 which
is compared to a chi-squared distribution on 64 degrees of freedom. (There
are 64 more parameters in model 2 than in model 1.) A p-value for the test
can be obtained as follows:

� From the Basic Statistics menu, select Tail Areas

� Under Operation, select Chi-Squared

� Next to Value, input the value of the test statistic, i.e, 726.44

� Input the number of degrees of freedom for the test, i.e, 64

� Click Calculate

You should obtain a p-value which is extremely small, suggesting that the
null hypothesis H0 : β1 = β2 = · · · = β64 = 0 should be rejected. We
conclude that there are real differences between schools in the population
mean of normexam.

The ANOVA or fixed effects model can be used to compare any number of
groups. However, there are some potential drawbacks of this approach:

If the sample sizes within groups are small, the estimates of the group effects
may be unreliable. Also, if there are J groups to be compared, then J − 1
parameters are required to capture group effects. If J is large, this leads to
estimation of a large number of parameters.

The origins of the ANOVA approach lie in experimental design where there
are typically a small number of groups to be compared and all groups of
interest are sampled. Often, however, we only have a sample of groups (e.g.
a sample of schools) and it is the population of groups from which our sample
was drawn which is of interest. The ANOVA model does not allow us to make
inferences beyond the groups in our sample.
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Additional explanatory variables may be added to the fixed effects model, but
the effects of group-level variables cannot be separately estimated. They are
confounded with the group effects. For example, if we include x1, x2, . . . , x64
in the regression model, we cannot estimate the effect of school-level char-
acteristics such as school gender (i.e, boys’ school, girls’ school or mixed) on
exam performance. This is because any school-level variable can be expressed
as a linear combination of x1, x2 . . . , x64.

As an illustration of this last point, let’s add the school-level variable, school
gender (schgend) to the model. This variable is coded as follows: 1 for a
mixed school, 2 for a boys’ school and 3 for a girls’ school.

� Click on the Add Term button

� From the drop-down list labelled variable, select schgend

� Click Done

� Click the Start button to run the model

We obtain the following results:

The first category of schgend (mixed schools) is taken by default as the
reference for the effects of school gender, so the overall reference category
now becomes school 65 and mixed schools. The model attempts to separate
school gender effects from the 64 school dummy effects. You can see that the
coefficients of boysch and girlsch are estimated as 0. This tells us that this
type of ANOVA or fixed effects model cannot separate out these two sets of
effects because of the confounding problem described above.
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2.5 Comparing means: Random effects or mul-

tilevel model

If we are interested in describing the means of a large number of groups, an
alternative to the fixed effects model of equation (2.3) is a random effects
or multilevel model. In a random effects model, group effects (represented
by u0j in equation (2.4) below) are assumed to be random, usually following
a Normal distribution. The population is considered to have a two-level
hierarchical structure with lowest level units at level 1, nested within groups
at level 2. For example, in our educational example we have students at
level 1 and schools at level 2. The residual is now partitioned into a level 1
component eij and a level 2 component u0j.

The random effects model with no explanatory variables can be written as:

yij = β0j + eij

β0j = β0 + u0j

u0j ∼ N(0, σ2
u0)

eij ∼ N(0, σ2
e) (2.4)

The first, second and last lines of the random effects model are equivalent
to the fixed effects ANOVA model in equation (2.3), with u0j = βj. The
difference is the way in which the between school differences are treated. In
this model u0j, the school effects, are assumed to be random variables coming
from a Normal distribution with variance σ2

u0. In fact, we no longer need to
choose a reference category as it is more convenient to regard β0 as the overall
population mean with the u0j representing each school’s difference from this
mean. It follows that the mean value of the random variable u0j is zero. If,
additionally, we assume Normality we can then describe its distribution in
terms of the mean and variance as in line 3 of (2.4). This type of model
is sometimes called a variance components model, owing to the fact that
the residual variance is partitioned into components corresponding to each
level in the hierarchy. The variance between groups is σ2

u0 and the variance
between individuals within a given group is σ2

e .

The similarity between individuals in the same group is measured by the
intra-class correlation, where ‘class’ may be replaced by whatever defines
groups:

σ2
u0

σ2
u0 + σ2

e

The intra-class correlation measures the extent to which the y-values of in-
dividuals in the same group resemble each other as compared to those from
individuals in different groups. It may also be interpreted as the proportion
of the total residual variation that is due to differences between groups, and
is referred to as the variance partition coefficient (VPC) as this is the more
usual interpretation (see Goldstein (2003), pp 16-17).
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Comparing a random effects model to a fixed effects model

In the multilevel approach, the groups in the sample are treated as a random
sample from a population of groups. The variation between groups in this
population is σ2

u0. However, the number of groups should be reasonably
large. If J is small, group effects can be captured using fixed effects, i.e,
including dummy variables for groups as explanatory variables. Regardless
of the number of groups to be compared, only one additional parameter, σ2

u0,
is required to capture group effects.

Categorical and continuous group-level explanatory variables may be added
to the model; their effects are not confounded with u0j as in the fixed effects
model. An illustration of this point is given later in the chapter.

The random effects model (2.4) is specified in MLwiN as follows. First,
remove the set of 64 school dummy variables from the model:

� Click on one of the school dummy variables in the Equations win-
dow

� Click the Delete Term button

� In the dialogue box that appears click Yes to remove the school level
dummy variables

Now remove boysch and girlsch, the dummy variables for schgend:

� Click on one of the two school gender dummy variables in the Equa-
tions window

� Click the Delete Term button

� In the dialogue box that appears, click Yes to remove the school
level dummy variables

You should now have a single-level model with an intercept term, but no
other explanatory variables.

The next step is to specify the two levels in the hierarchical structure. At
level 1 we have students, as before, but we now have schools at level 2. In
the Equations window:

� Click on normexam (or y if you are viewing mathematical symbols)

The Y variable window will appear:
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At the moment this window shows that our y variable is normexam, we have
specified a single-level model, and the observations are made on students. To
specify a two-level hierarchical structure, with students nested within schools:

� From the N levels: list, select 2-ij

� From the level 2 (j): list, select school

� Click done

Note that by convention MLwiN uses the suffix i for level 1 and j for
level 2.

To add u0j to the random part of the model, we need to specify that the
intercept β0 is random at the school level:

� Click β0 in the Equations window (You may have to click the Es-
timates button first.)

The following window appears:

� Check the box labelled j (school)

� Click Done

This produces:
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which is exactly the form of equation (2.4). You may need to click the +
button a couple of times in order to see the complete model specification.

In summary, the model that we have specified allows the mean of normexam
to vary across schools. The model allows the mean for school j to depart
(be raised or lowered) randomly from the overall mean by an amount u0j,
which is assumed to be a Normally distributed random quantity (as stated
in (2.4)). The ith student in the jth school departs from their school mean
by an amount eij.

Just as we can toggle between xs and actual variable names using the Name
button, we can also show variable names for subscripts. To change the display
mode in this way:

� Click the Notation button

� Check the subscripts as names box

� Click Done

This produces:

This display is somewhat verbose but a little more readable than the default
subscript display. You can switch back to the default subscripts by doing the
following:

� Click the Notation button

� Uncheck the subscripts as names box, and click Done

Before running a model it is always a good idea to get MLwiN to display a
summary of the hierarchical structure to make sure that the structure MLwiN
is using is correct. To do this:

� Select the Model menu

� Select Hierarchy Viewer
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This produces:

The top summary grid shows, in the total column, that there are 4059
pupils in 65 schools. The range column shows that there are a maximum
of 198 pupils in any school. The Details grid shows information on each
school. ‘L2 ID’ means ‘level 2 identifier value’, so that the first cell under
Details relates to school 1. If when you come to analyse your own data the
hierarchy that is reported does not conform to what you expect, then the
most likely reason is that your data are not sorted in the manner required
by MLwiN.

We are now ready to estimate the model. The estimation procedure for a
multilevel model is iterative. The default method of estimation is iterative
generalised least squares (IGLS). This is noted on the right of the Stop
button, and it is the method we shall use. The Estimation control button
is used to vary the method, to specify the convergence criteria, and so on.
See the Help system for further details.

� Click Start

You will now see the progress gauges at the bottom of the screen fill up
with green as the estimation proceeds alternately for the random and fixed
parts of the model. In the case of a single-level model, estimated using OLS,
estimates are obtained after iteration 1 at which point the blue highlighted
parameters in the Equations window change to green. For a multilevel
model, however, an iterative estimation procedure is used and more itera-
tions will be required. Estimation is completed in this case at iteration 2
using the Iterative Generalised Least Squares (IGLS) procedure. Conver-
gence is judged to have occurred when, for each of the parameter estimates,
the relative differences between two iterations is less than a given tolerance,
which is 10−2 = 0.01 by default but can be changed from the Options menu.

You should obtain the following results:
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The overall mean of normexam is estimated as β̂0 = −0.013. The means
for the different schools are distributed about their overall mean with an
estimated variance of 0.169. The response variable is standardised to have
a Normal distribution with mean of 0 and variance of 1, which is why the
estimated mean β̂0 is very close to zero and the total variance (obtained by
adding the level 1 and level 2 variances) is very close to 1. The between-
school variance is estimated as σ̂2

u = 0.169, and the variance between pupils
within schools is estimated as σ̂2

e = 0.848.

From a Normal test of H0 : σ2
u0 = 0 (analogous to testing H0 : β1 = β2 =

· · · β64 = 0 in the fixed effects model), this variance appears to be signifi-
cantly different from zero (Z = 0.169/0.032 = 5.3, p < 0.001). However,
judging significance for variances (and assigning confidence intervals) is not
as straightforward as for the fixed part parameters because the distribution of
the estimated variance is only approximately Normal. The Normal test there-
fore provides an approximation that can act as a rough guide. A preferred
test is the likelihood ratio test. In a likelihood ratio test of H0 : σ2

u0 = 0,
we compare the model above with a model where σ2

u0 is constrained to equal
zero, i.e, the single-level model with only an intercept term. The value of
the likelihood ratio statistic, obtained from the two models’ loglikelihoods, is
11509.36− 11010.65 = 498.71, which is compared to a chi-squared distribu-
tion on 1 degree of freedom. We conclude that there is significant variation
between schools.

Note that the likelihood ratio statistic is very different from Z2 = 28.09
which also has a chi squared distribution on 1 degree of freedom, so the
Normal test based on Z is a poor approximation in this case.

The variance partition coefficient is:

0.169

0.169 + 0.848
= 0.166

About 17% of the total variance in normexam may be attributed to differ-
ences between schools.

Unlike the fixed ANOVA model, we can now investigate the effects of school-
level variables. For example, we can add schgend:
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� Click on the Add Term button

� From the drop-down list labelled variable select schgend

� Click done

� Click the Start button to run the model

You should then see the following results:

Note that MLwiN recognises that schgend is a school level variable
(since all students in the same school have the same value of schgend)
and therefore assigns a single subscript, j, to the dummy variables boysch
and girlsch.

The reference category for schgend is mixed schools, so β0 is the mean for
children attending a mixed school, estimated by −0.101. β1 is the coefficient
of boysch and represents the mean difference in exam scores between chil-
dren in a boys’ school and children in a mixed school. Likewise β2 is the
coefficient of girlsch and it represents the mean difference in exam scores
between children in a girls’ school and children in a mixed school. We see
that children from girls’ schools fare better by 0.258 of a standard deviation
unit, on average, in their exam scores than children from a mixed school.
If we compare the between-school variation for this model and the previous
model, which excluded school gender terms, we see a reduction from 0.169
to 0.155. This reduction indicates that very little of the differences between
schools is explained by school gender. The ability to estimate between-group
variation and also include group-level covariates in an attempt to explain
between-group variation is a great strength of multilevel modelling.

� Please save your worksheet at this point by clicking on the File menu,
and selecting Save worksheet As. . .

� Type tutorial2 in the box next to Filename:

� Click Save
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Chapter learning outcomes

? How to fit a single-level (fixed effects) regression model to compare
the means of two or more groups

? What a multilevel, variance components model is

? The difference between fixed effects and random effects models

? The equations used to describe these models

? Switching between different display modes in MLwiN, using the No-
tation, Name, +, − and Estimates buttons

? How to construct, estimate and interpret these models using the
Equations window in MLwiN

? How to carry out Normal tests and likelihood ratio tests of signifi-
cance
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Chapter 3

Residuals

3.1 What are multilevel residuals?

Towards the end of the last chapter, we fitted a multilevel model that allowed
for school effects on exam scores at age 16, normexam. The model was given
in equation (2.4):

yij = β0j + eij

β0j = β0 + u0j

u0j ∼ N(0, σ2
u0)

eij ∼ N(0, σ2
e) (2.4)

The u0j terms are the school random effects, sometimes referred to as school
residuals. In a fixed effects (ANOVA) model the school effects, represented
in equation (2.3) by β0 + βj, are treated as fixed parameters for which direct
estimates are obtained. In a multilevel (random effects) model, the school
effects are random variables whose distribution is summarised by two pa-
rameters, the mean (zero) and variance σ2

u0. However, if we wish to make
comparisons between schools we need to estimate the individual school resid-
uals in some way, after having fitted the model. In this chapter, we describe
how school residuals can be estimated, how these estimates can be obtained
using MLwiN, and how the estimated residuals can be used for checking
model assumptions. We conclude by discussing interpretation.

In this chapter we will work with the multilevel model specified in equations
(2.4) above. Chapters 2 to 7 consist of a series of multilevel analyses on the
tutorial data set. In order to make each of these chapters self-contained, we
always start by opening the file tutorial.ws:

37
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� Select the Open Worksheet option on the File menu

� Open the file tutorial.ws

� Select the Equations menu item from the Model menu

� Click the Notation button

� In the Notation window, clear the box beside general

� Click Done

To demonstrate calculation of residuals in MLwiN, let’s fit model (2.4):

� Click on y in the Equations window

� In the Y variable window, select y: normexam

� Select N levels: 2-ij

� Select level 2(j): school

� Select level 1(i): student

� Click done

� In the Equations window, click on β0

� In the intercept window, check school(j)

� Click Done

Now run the model and view the estimates:

� Click Start on the main toolbar

� Click Name then Estimates twice in the Equations window

This produces:

The current model is a two-level variance components model, with the overall
mean of the dependent variable normexam defined by a fixed coefficient β0.
The second level was added by allowing the mean for the jth school to be
raised or lowered from the overall mean by an amount u0j. These departures



3.1. WHAT ARE MULTILEVEL RESIDUALS? 39

from the overall mean are known as the level 2 residuals. Their mean is zero
and their estimated variance of 0.169 is shown in the Equations window.
With educational data of the kind we are analysing, they might be called
the school effects. In other data sets, the level 2 residuals might be hospital,
household or area effects, etc.

The true values of the level 2 residuals are unknown, but we will often need to
obtain estimates of them. We might reasonably ask for the effect on student
attainment of one particular school. We can in fact predict the values of the
residuals, given the observed data and the estimated parameters of the model
(see Goldstein (2003), Appendix 2.2). In OLS multiple regression, we can
estimate the residuals simply by subtracting the individual predictions from
the observed values. In multilevel models with residuals at each of several
levels, a more complex procedure is needed.

Suppose that yij is the observed value for the ith student in the jth school
and that ŷij is the predicted value from the regression, which for the current
model will equal the overall mean of normexam. Then the raw residual
for this subject is rij = yij − ŷij. The raw residual for the jth school is the
mean of the rij for the students in the school. Write this as r+j. Then the
estimated level 2 residual for this school is obtained by multiplying r+j by a
factor as follows:

û0j =
σ2
u0

σ2
u0 + σ2

e/nj
r+j

where nj is the number of students in school j.

The multiplier in the above formula is always less than or equal to 1 so that
the estimated residual is usually less in magnitude than the raw residual. We
say that the raw residual has been multiplied by a shrinkage factor and the
estimated residual is sometimes called a shrunken residual. The shrinkage
factor will be noticeably less than 1 when σ2

e is large compared to σ2
u0 or

when nj is small (or both). In either case we have relatively little information
about the school (its students are very variable or few in number) and the raw
residual is pulled in towards zero. In future we shall use the term ‘residual’
to refer to a shrunken residual.

To explain further the idea of shrinkage, consider the case where we have no
observations at all in a particular school, perhaps one that was not in our
sample of schools. Our best estimate of that school’s performance is the over-
all mean β̂0. For a school with observations on a small number of students,
we can provide a more individualised estimate of its mean performance, but
we know that the mean is estimated imprecisely. Rather than trusting this
imprecise mean on its own, we may prefer to use the information that the
school is a member of the population of schools whose parameters we have
estimated from the data, by using a weighted combination of the estimated
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school mean and the estimated population mean. This implies shrinking the
observed school mean towards the centre of the population, and the optimal
factor for this purpose is the shrinkage factor given above.

It is the shrinkage factor that causes the difference between the ANOVA
group means and group means estimated from a multilevel analysis. For
example, suppose the school with the highest actual mean contains only two
pupils. ANOVA would just reproduce the actual mean from the sample
data, giving it a large standard error. The mean for this school based on a
multilevel model will be shrunk in towards the overall mean for all schools.

Note that having estimated the level 2 residuals we can estimate the level
1 residuals simply by the formula

êij = rij − û0j

MLwiN is capable of calculating residuals at any level and of providing stan-
dard errors for them. These can be used for comparing higher-level units
(such as schools) and for model checking and diagnosis.

3.2 Calculating residuals in MLwiN

We can use the Residuals window in MLwiN to calculate residuals. Let’s
take a look at the level 2 residuals in our model:

� Select the Model menu

� Select Residuals

� Select the Settings tab of the Residuals window
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The comparative standard deviation (SD) of the residual is defined as the
standard deviation of û0j − u0j and is used for making inferences about the
unknown underlying value u0j, given the estimate û0j. The standardised
residual is defined as û0j/SD(û0j) and is used for diagnostic plotting to
ascertain Normality etc.

As you will see, this window permits the calculation of the residuals and of
several functions of them. We need level 2 residuals, so at the bottom of the
window:

� From the level: drop-down list, select 2:school

You also need to specify the columns into which the computed values of the
functions will be placed:

� Click the Set columns button

The nine boxes beneath this button are now filled in grey with column num-
bers running sequentially from C300. These columns are suitable for our
purposes, but you can change the starting column by editing the start out-
put at box. You can also change the multiplier applied to the standard
deviations; by default 1× SD will be stored in c301:

� Edit the SD multiplier to be 1.96

� Click Calc (to calculate columns c300 to c308)

Having calculated the school residuals, we need to inspect them. MLwiN
provides a variety of graphical displays for this purpose. The most useful of
these are available directly from the Residuals window:

� Click on the Plots tab

This brings up the following window:
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One useful display plots the residuals in ascending order with their 95%
confidence limit. To obtain this:

� Click on the third option in the single frame (residual + / - 1.96 SD
x rank)

� Click Apply

The following graph appears:

This is sometimes known (for obvious reasons) as a caterpillar plot. We have
65 level 2 residuals plotted, one for each school in the data set. Looking at
the confidence intervals around them, we can see a group of about 20 schools
at the lower and upper end of the plot where the confidence intervals for their
residuals do not overlap zero. Remembering that these residuals represent
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school departures from the overall average predicted by the fixed parameter
β0, this means that these are the schools that differ significantly from the
average at the 5% level.

See Goldstein & Healy (1995) for further discussion on how to interpret and
modify such plots when multiple comparisons among level 2 units are to be
made. Comparisons such as these, especially of schools or hospitals, raise
difficult issues: in many applications, such as here, there are large standard
errors attached to the estimates. Goldstein & Speigelhalter (1996) discuss
this and related issues in detail.

Note: You may find that you sometimes need to resize graphs in MLwiN
to obtain a clear labelling of axes.

3.3 Normal plots

So far, we have looked at using estimated level 2 residuals for interpretation
purposes. For example, when the level 2 units are schools, the level 2 residuals
can be interpreted as school effects. Estimated residuals, at any level, can
also be used to check model assumptions. One such assumption is that the
residuals at each level follow Normal distributions. This assumption may
be checked using a Normal probability plot, in which the ranked residuals
are plotted against corresponding points on a Normal distribution curve. If
the Normality assumption is valid, the points on a Normal plot should lie
approximately on a straight line.

We will begin by examining a Normal plot of the level 1 residuals. To produce
a Normal plot in MLwiN:

� Select the Model menu

� Select Residuals

� Click on the Settings tab of the Residuals window

� From the level: list select 1:student

� Click the Set columns button

� Click Calc

� Click on the Plots tab

� Click on the first option, standardised residual x normal scores

� Click Apply

You will obtain the following plot. The plot looks fairly linear, which suggests
that the assumption of Normality is reasonable. This is not surprising in this
case since our response variable has been normalised.
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To produce a Normal plot of the level 2 residuals, just repeat the steps
described above, but next to level: in the Settings tab replace 1:student
by 2:school to calculate the school residuals. You should obtain the following
plot, which again looks fairly linear.

Please save your worksheet at this point:

� Click on the File menu and select Save worksheet as . . .

� Type tutorial3 in the box next to Filename:

� Click Save
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Chapter learning outcomes

? Multilevel residuals are shrunken towards zero, and shrinkage in-
creases as nj decreases

? How to calculate residuals in MLwiN

? How to produce and interpret Normal probability plots
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Chapter 4

Random Intercept and Random
Slope Models

4.1 Random intercept models

In any serious study of school effects we need to take into account student
intake achievements in order to make ‘value-added’ comparisons between
schools. In this chapter, we consider whether the differences in normexam
between schools remain after adjusting for a measure of achievement on entry
to secondary school, standlrt. standlrt is the students’ score at age 11 on
the London reading test, standardised to produce z-scores. We also consider
random effects models, which allow the effect of intake score to vary across
schools. Let’s start by plotting the response, normexam, against standlrt:

� Open the tutorial.ws worksheet

� Select Customised Graph(s) from the Graphs menu

� In the drop-down list labelled y, select normexam

� In the drop-down list labelled x, select standlrt

� Click on the Apply button

The following graph will appear:

47
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The plot shows, as might be expected, a positive correlation where pupils
with higher intake scores tend to have higher outcome scores. We can fit a
simple linear regression to this relationship:

� Select the Equations menu item from the Model menu

� Click the Notation button

� In the Notation window, clear the box beside general

� Click Done

Now set up the model:

� Click on y in the Equations window

� In the Y variable window, select y: normexam

� Select N levels: 1-i

� Select level 1(i): student

� Click Done

� In the Equations window, click on the Add term button

� From the Specify term window’s variable drop-down list, select
standlrt

� Click Done

� Click the Estimates button

The Equations window now looks like this:
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Estimate the model and view the results:

� Click the Start button on the main toolbar

� Click the Estimates button on the Equations window

The Equations window above shows a simple linear regression model that
describes the positive relationship between normexam and standlrt. The
equation of the estimated regression line is:

normexam = −0.001 + (0.595× standlrt)

An increase of 1 unit on the intake standlrt variable increases the expected
outcome examination score, normexam, by 0.60 units. The variability of
the students’ scores around the overall average line is 0.65.

We can now address the question of whether schools vary after having taken
account of intake using either a fixed or random effects model. We shall work
with the random effects multilevel model:

� Click on normexam in the Equations window

� In the N levels list, select 2-ij

� In the level 2(j) list, select school

� Click Done

We want to allow the intercept term to vary randomly across schools. To do
this:

� Press the Estimates button to display mathematical symbols

� Click on the β0 term in the Equations window (actually the −0.001)
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� Check the box labelled j(school)

� Click Done

The Equations window will show the updated model structure:

This is an extended version of the random effects, multilevel, model in equa-
tion (2.4) that we used in Chapter 2 to estimate between school variability,
where we have now taken some account of pupil intake ability by including
a term for standlrt in our model. Every school now has its own intercept,
β0j, but all schools share a common slope. This amounts to fitting a series
of parallel lines, one for each school.

Let’s now run the model and view the estimates:

� Click the Start button on the main window’s toolbar

� Click the Estimates button (twice if necessary) in the Equations
window

This produces the following:

Recall that our model amounts to fitting a set of parallel straight lines to the
data from the different schools. The slopes of the lines are all the same, and
the fitted value of the common slope is 0.563 with a standard error of 0.012
(clearly, this is highly significant). However, the intercepts of the lines vary.
Their mean is 0.002 and this has a standard error of 0.040. Not surprisingly
with Normalised and standardised data, the mean intercept is close to zero.
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The intercepts for the different schools are the level 2 residuals u0j and these
are distributed around zero with a variance shown on line 3 of the display
as 0.092 (standard error 0.018). Of course, the actual data points do not
lie exactly on the straight lines; they vary about them with amounts given
by the level 1 residuals eij, and these have a variance estimated as 0.566
(standard error 0.013). We saw in the previous chapter chapter how MLwiN
enables us to estimate and plot the residuals and we shall use this further
in the next chapter where we will see how we can look at residual and other
plots together in order to obtain a better understanding of the model.

The likelihood ratio test comparing the single level linear regression model
with the multilevel model, where we estimate the between school variation
in the intercepts, is 9760.5− 9357.2 = 403.3 with 1 degree of freedom (corre-
sponding to the added parameter σ2

u0). We therefore conclude that there is
significant variability between schools even after adjusting for the students’
intake achievement.

4.2 Graphing predicted school lines from a

random intercept model

We have now constructed and fitted a variance components model in which
schools vary only in their intercepts. It is a model of simple variation at
level 2, which gives rise to parallel lines as illustrated in Figure 1.2 (for four
schools).

To demonstrate how the model parameters we have just estimated combine
to produce such parallel lines, we now introduce the Predictions window.
This window can be used to calculate predictions from the model which can
be used in conjunction with the Customised graphs window to graph our
predicted values.

Let’s start by calculating the average predicted line produced from the fixed
part intercept and slope coefficients (β0, β1):

� Select Predictions from the Model menu

This brings up the predictions window:
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The elements of the model are arranged in two columns. Initially these
columns are ‘greyed out’. You build up a prediction equation in the top
section of the window by selecting the elements you want from the lower
section. Clicking on an element includes it in the prediction equation, and
clicking again on that element removes it from the equation.

Select suitable elements to produce the desired equation, for example:

� Click on β0 and β1

The predictions window should now look like this:

The only estimates used in this equation are β̂0 and β̂1, the fixed parameters.
No random quantities have been included.

We need to specify where the output from the prediction is to go and then
execute the prediction:

� In the output from prediction to drop-down list, select c11

� Click Calc

We now want to graph the predictions in column 11 against our predictor
variable standlrt. We can do this using the Customised graph(s) window:
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� Select the Graphs menu

� Select Customised Graph(s)

This produces the following window:

Display D1 contains the scatter plot we specified at the start of the chapter.
We will graph the prediction we have just created in a new display:

� Select D2 (display 2) from the display drop-down list located at the
top left of the Customised graph window

This general purpose graphing window has a great deal of functionality, de-
scribed in more detail both in the help system and in the next chapter of this
guide. For the moment we will confine ourselves to its more basic functions.
To plot the predicted values:

� In the drop-down list labelled y in the plot what? tab, select c11

� In the neighbouring drop-down list labelled x select standlrt

� In the drop-down list labelled plot type select line

� Click the Apply button

The following graph will appear:
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The prediction equation is

ˆnormexamij = β̂0 + β̂1standlrtij

where a hat over a term means “estimate of”. So substituting the estimates
of the intercept and slope we get the following prediction equation.

ˆnormexamij = 0.002 + 0.563 standlrtij

The line for the jth school departs from the average prediction line by an
amount u0j. The school level residual u0j modifies the intercept term, but
the slope coefficient β1 is fixed. Thus all the predicted lines for all 65 schools
must be parallel. The prediction equation for the jth school is therefore

ˆnormexamij = (0.002 + û0j) + 0.563 standlrtij (4.1)

We saw in the previous chapter how to get MLwiN to calculate residuals.
Let’s have a look at the school level residuals:

� Select Residuals from the Model menu

� Set the level drop down list at the bottom left of the Residuals
window (on the Settings tab) to 2:school

� Click the Calc button

The level 2 residuals have been written to column 300 (c300) of the worksheet,
as indicated towards the top of the output columns section of the residuals
window. We can view the data in this column by doing the following:

� Select View or edit data from the Data Manipulation menu
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� Click the view button at the top of the window that appears

� From the drop-down list that appears, scroll to c300

� Click the OK button

This gives:

We see that column 300 contains 65 entries, one for each school. (Column
lengths are displayed in brackets after column names at the top of the data
grid). The intercept residual for school 1 is 0.37 and for school 2 is 0.50 and
so on. We can now substitute the estimate for the jth school’s residual, û0j,
into equation 4.1 to give the prediction line for the jth school. For example,
if we substitute residuals for schools 1 and 2 we get the following pair of
prediction lines:

ˆnormexamij = (0.002 + 0.37) + 0.563standlrtij (4.2)

ˆnormexamij = (0.002 + 0.50) + 0.563standlrtij (4.3)

We can calculate and graph the prediction lines for all 65 schools to get a
picture of the between-school variability using the predictions and Cus-
tomised graph windows.

First we calculate the prediction lines using the predictions window:

� Select the predictions window

The predictions window is currently showing the prediction for the average
line, given by the equation:

ˆnormexamij = β̂0 + β̂1standlrtij (4.4)

To include the estimated school level intercept residuals in the prediction
function:

� Click on the term u0j
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The prediction equation in the upper panel of the predictions window now
becomes

ˆnormexamij = β̂0j + β̂1standlrtij (4.5)

The difference between equations (4.4) and (4.5) is that the estimate of the
intercept β̂0 now has a j subscript. This subscript indicates that instead
of having a single intercept, we have an intercept for each school, which is
formed by taking the fixed estimate and adding the estimated residual for
school j, i.e, β̂0j = β̂0 + û0j.

We therefore have a regression equation for each school which when applied
to the data produces 65 parallel lines. To overwrite the previous prediction
in column 11 with the parallel lines:

� Click the Calc button in the predictions window

This calculation applies prediction equation (4.5) to every point in the data
set. This results in a column 11 containing 4059 predicted values. The
first school contains 73 students; the prediction equation for the first school
becomes equation (4.2), after substituting the intercept residual for school
1 into (4.5). Equation (4.2) is applied to the first 73 values of standlrt
resulting in the first 73 predicted points in column 11. These predicted
points when plotted against the 73 standlrt values will lie on a straight line
since prediction equation (4.2) is the equation of a straight line. The second
school contains 55 students and the prediction equation for the second school
(4.3) is applied to these data points resulting in predicted points 74. . . 128 in
column 11. This process is repeated for each school in the data set resulting
in column 11 being filled with 4059 predicted points.

The graph display is updated automatically when column 11 is overwritten
with the new prediction. However, we do not see the expected 65 lines, what
we see is:
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This is a plot of the predictions in column 11 against standlrt. The graph
does not recognise that the data is grouped into 65 schools. What we need
is a grouped plot:

� Select the Customised graphs window

� In the group drop-down list select school

� Click Apply

The graph display now shows the expected 65 parallel lines:

A natural next step is to construct models that allow the slopes to be different
in different schools. However, before we do that we will look at another
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important feature of multilevel models.

4.3 The effect of clustering on the standard

errors of coefficients

As was pointed out in Chapter 1, ignoring the fact that pupils are grouped
within schools can cause underestimation of the standard errors of regres-
sion coefficients. This clustering can lead to incorrect inferences; since the
standard errors are too small, we may infer that relationships exist between
variables when they do not. To illustrate this, let’s introduce the schgend
variable again:

� Click on the Add Term button on the Equations window toolbar

� From the Specify term window’s variable drop-down list, select
schgend

� Click Done

� Click the More button to estimate the updated model

This is the model we fitted at the end of Chapter 2, except we have also
included a term for standlrt.

As we saw previously, both boys’ and girls’ schools have a higher mean
normexam than mixed schools. To test whether boys’ and girls’ schools
differ from mixed schools, we compare the coefficients β2 and β3 to their
standard errors. We see that the mean for girls’ schools is significantly dif-
ferent from the mean for mixed schools, whereas boys’ schools do not differ
significantly from mixed schools. Now let’s fit the single-level model:

� Click on β0j

� On the screen that appears uncheck the box labelled j(school)
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� Click Done

� Run the model by pressing the More button

We then obtain the following results:

The estimated coefficients obtained from the two models are very similar.
However, the standard errors are all different. The boys’ school coefficient
in the multilevel model is less than its standard error, and therefore not
statistically significant. In the single level model, the same coefficient is three
times its standard error. In this case, we would make an incorrect inference
about the effect of boys’ schools on achievement if we used the results from a
single level model. Apart from the standard error of standlrt, the standard
errors of the coefficients are substantially reduced in the single level model.
This demonstrates why OLS regression should not be used when there are
level 2 explanatory variables. Generally, the standard errors of level 1 fixed
coefficients will also be underestimated in single level models.

4.4 Does the coefficient of standlrt vary across

schools? Introducing a random slope

The variance components model that we have just worked with assumes that
the only variation between schools is in their intercepts. We should allow
for the possibility that the school lines have different slopes as in Figure 1.3
(in Chapter 1). This implies that the coefficient of standlrt will vary from
school to school. Again, we can achieve this by fitting a random effects or a
fixed effects model. As in Chapter 2, we would include 64 dummy variables
(taking one school as the reference category) to obtain a separate intercept
for each school. To allow the effect of standlrt to vary across schools, we
would need to include a set of interaction terms, created by multiplying
standlrt with each of the 64 school dummy variables. Taking school 65 as
the reference category, we obtain the following model:

yi = β0 + β1standlrt

+ β2school 1i + . . .+ β65school 64i

+ β66school 1 · standlrti + · · ·+ β129school 64 · standlrti + ei
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This model, which now includes 130 fixed effects, is clearly rather cumber-
some. It amounts to fitting a separate linear regression to each school. We
may believe, as is reasonable in this case, that our 65 schools are sampled
from a larger population of schools. In the fixed effects model, all the schools
are treated independently and there is nothing in the model to represent the
fact that they are drawn from the same population. Typically, we wish to
make inferences to the population of level 2 units (schools) from which we
have drawn our sample of 65 schools. This type of inference is not available
with the fixed effects model. Also, as we explained in the last chapter, the
fixed effects model does not permit the addition of school level explanatory
variables, which may be of crucial interest to us.

In the light of these shortcomings we will proceed with a multilevel model to
investigate the question of whether the coefficient of standlrt varies across
schools.

If we regard the schools as a random sample from a population of schools,
then we wish to specify a coefficient of standlrt that is random at level 2. To
do this we need to inform MLwiN that the coefficient of x1ij, or standlrtij,
should have the subscript j attached:

� Select Equations on the Model menu

� Click Estimates until β0 etc. are displayed in black

� Click on β0 and check the box labelled j (school) then click Done

� Click on β1 and check the box labelled j (school) then click Done

� Remove schgend from the model by clicking on β2 or β3 in the
Equations window

� Select Delete term from the window that appears

This produces the following result:

Now both the intercept and the slope vary randomly across schools. Hence
in the first line of the display both β0 and β1 have a j subscript. The second
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line states that the intercept for the jth school (β0j) is given by β0, the aver-
age intercept across all the schools, plus a random departure u0j. Likewise,
the third line states that the slope for the jth school (β1j) is given by β1,
the average slope across all the schools, plus a random departure u1j. The
parameters β0 and β1 are the fixed part (regression) intercept and slope co-
efficients. They combine to give the average line across all students in all
schools. The terms u0j and u1j are random departures from β0 and β1, or
‘residuals’ at the school level; they allow the jth school’s summary line to
differ from the average line in both its slope and its intercept.

A new term, Ωu, now appears in the Equations window. The terms u0j and
u1j follow a multivariate (in this case bivariate) Normal distribution with
mean vector 0 and covariance matrix Ωu. In this model, since we have two
random variables at level 2, Ωu is a 2 by 2 covariance matrix. The elements
of Ωu are:

var(u0j) = σ2
u0 variation in the intercepts across the schools’ summary lines

var(u1j) = σ2
u1 variation in the slopes across the schools’ summary lines

cov(u0j,u1j) = σu01 covariance between the school intercepts and slopes

Students’ scores depart from their school’s summary line by an amount eij,
which as before are assumed to be normally distributed with mean 0 and
variance σ2

e . The letter u is used for random departures at level 2 (in this
case school). The letter e is used for random departures at level 1 (in this
case student).

To obtain estimates for this model, do the following:

� Click More

� Click Estimates (twice if necessary)

The result is as follows:

From line 3, we see that the estimate of β1, the coefficient of standlrt, is
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0.557 (standard error 0.020), which is close to the estimate obtained from the
model with a single slope. However, the individual school slopes vary about
this mean with a variance estimated as 0.015 (standard error 0.004). The in-
tercepts of the individual school lines also differ. Their mean is −0.012 (stan-
dard error 0.040) and their variance is 0.090 (standard error 0.018). In addi-
tion, there is a positive covariance between intercepts and slopes estimated
as +0.018 (standard error 0.007), suggesting that schools with higher inter-
cepts tend to have steeper slopes; this corresponds to a correlation between
the intercept and slope (across schools) of 0.018/

√
0.015× 0.090 = 0.49.

This positive correlation will lead to a fanning out pattern when we plot the
schools’ predicted lines.

As in the previous model, the pupils’ individual scores vary around their
schools’ lines by quantities eij, the level 1 residuals, whose variance is esti-
mated as 0.554 (standard error 0.012).

Comparing this model with a single slope model (without school gender ef-
fects) you will see that −2 log-likelihood value has decreased from 9357.2 to
9316.9, a difference of 40.3. The new model involves two extra parameters,
the variance of the slope residuals u1j and their covariance with the intercept
residuals u0j. Therefore, the change in the −2 log-likelihood value (which is
also the change in deviance) has a chi-squared distribution on 2 degrees of
freedom under the null hypothesis that the extra parameters have population
values of zero. The change is highly significant, confirming the better fit of
the more elaborate model to the data.

4.5 Graphing predicted school lines from a

random slope model

We can look at the pattern of the schools’ summary lines by updating the
predictions in the graph display window. We need to form the prediction
equation

ŷ = β̂0jx0 + β̂1jx1ij

One way to do this is to:

� Select the Model menu

� Select Predictions

� In the Predictions window click on the word variable

� From the menu that appears choose Include all explanatory vari-
ables

� In the output from prediction to drop-down list, select c11

� Click Calc
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This will overwrite the previous predictions from the random intercepts
model with the predictions from the random slopes model. The graph win-
dow will be automatically updated. If you do not have the graph window
displayed, then:

� Select the Graphs menu

� Select Customised Graph(s)

� Click Apply

The graph display window should look like this:

The graph shows the fanning out pattern for the school prediction lines that
is implied by the positive intercept/slope covariance at the school level.

To test your understanding, try building different prediction equations in the
predictions window. Before you press the Calc button, try and work out
how the graph in the graph display window will change.

That concludes the fourth chapter. It is a good idea to save your worksheet
using the Save worksheet As option on the File menu.

Note that saving a worksheet preserves the current contents of the data
columns (including new ones you may have created) and saves the current
model. Settings for graphs are saved; to see the graph(s) you have created
again you will need to go to the Customised graph window, select the
appropriate display number, and click Apply.
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Chapter learning outcomes

? What a random intercept model is

? What a random slope model is

? The equations used to describe these models

? How to construct, estimate and interpret these models using the
Equations window in MLwiN

? How to carry out simple tests of significance

? How the effect of clustering can distort the standard errors of OLS
regression coefficients

? How to use the predictions window to calculate predictions from
the model estimates
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Graphical Procedures for
Exploring the Model

5.1 Displaying multiple graphs

In Chapter 3 we produced graphical displays of the school level residuals in
our random intercept model, using choices on the Plots tab of the Residuals
window to specify the type of plot we wanted. MLwiN has very powerful
graphical facilities, and in this chapter we shall see how to obtain more
sophisticated graphs using the Customised graph window. We will also
use some of these graphical features to explore the random intercepts and
random slopes models.

Graphical output in MLwiN can be described (very appropriately) as having
three levels. At the highest level, a display is essentially what can be dis-
played on the computer screen at one time. You can specify up to 10 different
displays and switch between them, as you require. A display can consist of
several graphs. A graph is a frame with x and y axes showing lines, points
or bars, and each display can show an array of up to 5× 5 graphs. A single
graph can plot one or more data sets, each one consisting of a set of x and y
coordinates held in worksheet columns.

To see how this works, we will calculate level 2 residuals for the random
intercepts model we fitted in Section 4.1 and produce a caterpillar plot as
a starting point for some graphical exploration of the model. Follow the
instructions in Section 4.1 to set up and run the model again, then:

� Select Residuals on the Model menu

� Select the Settings tab of the Residuals window

� From the level: drop-down list, select 2:school

65
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� Click the Set Columns button

� Edit the SD Multiplier to be 1.96

� Click Calc

� Click on the Plots tab

� Select residual +/− 1.96 SD x rank

� Click Apply

Notice that at the bottom right of the Plots tab of the Residuals window
it says “Output to graph display number” and in the box beneath D10 has
been selected. This means that the specification for the caterpillar plot has
been stored in Display 10. We can look at this specification and change or
add things:

� Select Customised Graph(s) on the Graphs menu

� From the drop-down list at the top-left of the display select D10

The following window appears:

The display so far contains a single graph and this in turn contains a single
data set, ds1, for which the y and x coordinates are in columns c300 and
c305 respectively. As you can check from the Residuals window, these
contain the level 2 residuals and their ranks.

Let us add a second graph to this display containing a scatter plot of normexam
against standlrt for the whole of the data. First we need to specify this as
a second data set.

� Select data set number 2 (ds#2) by clicking on the row labelled 2
in the grid on the left hand side of the window

� Use the y and x drop-down lists on the plot what? tab to specify
normexam and standlrt as the y and x variables in ds#2.
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Next we need to specify that this graph is to be separate from the caterpillar
plot. To do this:

� Click the position tab on the right hand side of the Customised
graph window

The display can contain a 5 × 5 grid or trellis of different graphs. The
cross in the position grid indicates where the current data set, in this case
(normexam, standlrt), will be plotted. The default position is row 1,
column 1. We want the scatter plot to appear vertically below the caterpillar
plot in row 2, column 1 of the trellis, so

� Click the row 2 column 1 cell in the position grid

This looks as follows:

Now to see what we have got:

� Click the Apply button at the top of the Customised graph win-
dow

The following display will appear on the screen:
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5.2 Highlighting in graphs

To illustrate the highlighting facilities of MLwiN let us add a third graph
to our set — a replica of a graph we produced in Section 4.2 showing the
65 individual regression lines of the different schools. We will create and
highlight the average line from which they depart in a random manner. We
can insert this graph between the two graphs that we already have.

We need to calculate the points for plotting in the new graph. For the
individual lines:

� Select Predictions on the Model menu

� Click on Variable

� Select Include all explanatory variables

� In the output from prediction to list, select c11

� Click Calc

This will form the predictions using the level 2 (school) residuals but not the
level 1 (student) residuals. For the overall average line we need to eliminate
the level 2 residuals, leaving only the fixed part of the model:

� In the Predictions window, click on u0j to remove it

� In the output from prediction to list, select c12

� Click Calc
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The Customised graph window is currently showing the details of data set
ds#2, the scatter plot. With this data set selected:

� Click on the position tab

� In the grid, click the cell in row 3, column 1

� Click Apply

The display now appears as follows:

We have not yet specified any data sets for the middle graph, so it is blank for
the time being. Here and elsewhere you may need to resize and re-position
the graph display window by pulling on its borders in the usual way.

Now let us plot the lines that we have calculated. We need to plot c11 and
c12 against standlrt. For the individual school lines we shall need to specify
the group, meaning that the 65 lines should be plotted separately. In the
Customised graph window:

� Select data set ds#3 at the left of the window

� In the y drop-down list, specify c11, and in the x drop-down list,
specify standlrt

� In the group drop-down list, select school

� In the plot type drop-down list, select line

� Select the position tab, and in the grid, click the cell in row 2,
column 1

� Click Apply
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This produces the following display:

Now we can superimpose the overall average line by specifying a second data
set for the middle graph. So that it will show up, we can plot it in yellow
and make it thicker than the other lines:

� Select data set ds#4 at the left of the Customised graphs window

� In the y drop-down list, specify c12, and in the x drop-down list,
specify standlrt

� In the plot type drop-down list, select line

� Select the plot style tab

� In the colour drop-down list, select 14 yellow

� In the line thickness drop-down list, select 3

� Select the position tab, and in the grid, click the cell in row 2,
column 1

� Click Apply

MLwiN makes it possible to zero in on features of particular schools that
appear to be unusual in some way. To investigate some of this with the graphs
that we have produced, click in the top graph on the point corresponding to
the largest of the level 2 residuals, the one with rank 65. This brings up the
following Graph options window:
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The box in the centre shows that we have selected the 53rd school out of the
65, whose identifier is 53. We can highlight all the points in the display that
belong to this school:

� Select highlight(style 1)

� Click Apply

You will see that the appropriate point in the top graph, two lines in the
middle graph and a set of points in the scatter plot have all become coloured
red. The individual school line is the thinner of the two highlighted lines in
the middle graph. As would be expected from the fact that it has the highest
intercept residual, the school’s line is at the top of the collection of school
lines.

It is not necessary to highlight all references to school 53. To de-highlight
the school’s contribution to the overall average line that is contained in data
set ds#4:

� In the Customised graph window, select ds#4

� Click on the other tab

� Click on the exclude from highlight box

� Click Apply

In the caterpillar plot there is a residual around rank 30 that has very wide
error bars. Let us try to see why. If you click on the point representing this
school in the caterpillar plot, the Graph options window will identify it as
school 48. Highlight the points belonging to this school in a different colour:
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� Using the In graphs box of the Graph options window, select
highlight (style 2)

� Click Apply

The points in the scatter plot belonging to this school will be highlighted in
cyan, and inspection of the plot shows that there are only two of them. This
means that there is very little information regarding this school. As a result,
the confidence limits for its residual are very wide, and the residual itself will
have been shrunk towards zero by an appreciable amount.

Next let us remove all the highlights from school 48.

� In the In graphs box of the Graph options window, select Normal

� Click Apply

Now let us look at the school at the other end of the caterpillar plot — the
one with the smallest school level residual (it turns out to be school 59).

� Click on its point in the caterpillar plot

� In the In graphs box of the Graph options window, select high-
light (style 3)

� Click Apply

The highlighting will remain and the graphical display will look like this:
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The caterpillar plot tells us simply that school 59 and 53 have different inter-
cepts. One is significantly below the average line, and the other significantly
above it. But the bottom graph suggests a more complicated situation. At
higher levels of standlrt, the points for school 53 certainly appear to be
consistently above those for school 59. But at the other end of the scale,
at the left of the graph, there does not seem to be much difference between
the schools. The graph indeed suggests that the two schools have different
slopes, with school 53 having the steeper.

To follow up this suggestion, let us keep the graphical display while we extend
our model to contain random slopes. To do this:

� From the Model menu select Equations

� Click on Estimates to show β1

� Click on β1 and check the box labelled j(school) to make it random
at level 2

� Click Done

� Click More on the main toolbar and watch for convergence

� Close the Equations window

The results should match those of the last figure in Section 4.4.

Now we need to update the predictions in column c11 to take account of the
new model:

� From the Model menu select Predictions

� Click on u0j and u1j to include them in the predictions

� In the output from prediction to drop-down list, select c11

� Click Calc

Notice that the graphical display is automatically updated with the new
contents of c11.

The caterpillar plot at the top of the display is now out of date, however,
having been calculated from the previous model. (Recall that we used the
Residuals window to create the caterpillar plot). We now have two sets of
level 2 residuals, one giving the intercepts for the different schools and the
other the slopes. To calculate and store these:

� Select Residuals from the Model menu

� Select 2:school from the level drop-down list
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� Edit the start output at box to 310

� Edit the SD Multiplier to be 1.96

� Click the Set columns button

� Click Calc

The intercept and slope residuals will be put into columns c310 and c311.
To plot them against each other:

� In the Customised graph window select data set ds#1 and click
Del data set

� From the y drop-down list select c310

� From the x drop-down list select c311

� Click Apply

The axis titles in the top graph also need changing.

Note that if you use the Customised graph window to create graphs
then titles are not automatically added to the graphs. This is because a
graph may contain many data sets so in general there is no obvious text
for the titles. The existing titles appear because the original graph was
constructed using the Plots tab on the Residuals window. You can
add or alter titles by clicking on a graph.

In our case:

� Click somewhere in the top graph to bring up the Graph options
window

� Select the Titles tab

� Edit the y title to be Intercept and edit the x title to be Slope

� Click Apply

You can add titles to the other graphs in the same way if you wish. Now the
graphical display will look like this:
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The two schools at the opposite ends of the scale are still highlighted, and
the middle graph confirms that there is very little difference between them
when values of standlrt are small. School 53 stands out as exceptional in
the top graph, with a high intercept and much higher slope than the other
schools.

For a more detailed comparison between schools 53 and 49, we can put 95%
confidence bands around their regression lines. To calculate the widths of
the bands and plot them:

� Select Predictions from the Model menu

� In the box in the lower left corner of the predictions window, edit
the multiplier of S.E. to 1.96

� From the S.E. of drop-down list select level 2 resid. function

� From the output to drop-down list select column c13

� Click Calc

� In the Customised graph window select data set ds#3

� Select the error bars tab

� From the y errors + list select c13

� From the y errors − list select c13

� From the y error type list select lines

� Click Apply
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This draws 65 confidence bands around 65 school lines, which is not a par-
ticularly readable graph. However, we can focus in on the two highlighted
schools by drawing the rest in white.

� Select the Customised graph window

� Select data set ds#3

� From the colour list, on the plot style tab, select 15 white

� Click Apply

The result is as follows:

The confidence bands confirm that what appeared to be the top and bottom
schools cannot be reliably separated at the lower end of the intake scale.

Looking at the intercepts and slopes may shed light on interesting educa-
tional questions. For example, schools with large intercepts and small slopes
— plotted in the top left quadrant of the top graph — are ‘levelling up’, i.e,
they are doing well by their students at all levels of initial ability. Schools
with large slopes are differentiating between levels of intake ability. The high-
lighting and other graphical features of MLwiN can be useful for exploring
such features of complex data. See Yang et al. (1999) for a further discussion
of this issue.
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Chapter learning outcomes

? How to make different types of graphical presentations of complex
data

? How to explore features of multilevel data using graphical facilities
such as highlighting

? How to describe differences among higher level units (e.g. schools)
when a random slopes model has been fitted, and in particular the
fact that such differences cannot be expressed with a sinle number
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Chapter 6

Contextual Effects

Many interesting questions in the social sciences are of the form “How are
individuals affected by their social contexts?” For example, do girls learn
more effectively in a girls’ school or in a mixed sex school? Do low ability
pupils fare better when they are educated alongside higher-ability pupils, or
do they fare worse?

In this chapter we will develop models to investigate these two questions.
Our starting point will be the model we fitted in Section 4.4.

To set up this model, do the following:

� Select the Open Worksheet option on the File menu

� Open the file tutorial.ws

� Select the Equations menu item from the Model menu

� Click the Notation button

� In the Notation window, clear the box beside general

79
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� Click Done

� Click on y in the Equations window

� In the Y variable window, select y: normexam

� Select N levels: 2-ij

� Select level 2(j): school

� Select level 1(i): student

� Click Done

� In the Equations window, click on β0

� In the intercept window, check the j(school) checkbox

� Click Done

� Click on the Add term button

� From the Specify term window’s variable drop-down list, select
standlrt

� Click Done

� Click on β1

� In the X variable window, check the j(school) checkbox

� Click Done

� Click the Estimates button twice

� Click Start

6.1 The impact of school gender on girls’ achieve-

ment

Let’s add pupil gender and school gender effects into the above model:

� Click the Add term button

� From the variable drop-down list select girl

� Click Done

� Click the Add term button

� From the variable drop-down list select schgend

� Click Done

The Equations window should now look like this (after clicking the Esti-
mates button):
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The reference category corresponds to boys in a mixed school. The dummy
variable girl has subscript ij because it is a pupil level variable, whereas
the two school level variables (boysch and girlsch) have only subscript j.
We can run the model and view the results (by clicking on the Estimates
button then on the More button on the main toolbar):

The reference subgroup is “boys in a mixed school”. We have four possi-
ble pupil subgroups. These are listed below, along with the corresponding
explanatory variable pattern and model prediction for that group.

Pupil Subgroup Values of Dummy Variables Predicted Mean Value
girl boy sch girl sch

Boys in a mixed school 0 0 0 -0.189
Girls in a mixed school 1 0 0 -0.189 + 0.168
Boys in a boys’ school 0 1 0 -0.189 + 0.180
Girls in a girls’ school 1 0 1 -0.189 + 0.168 + 0.175
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Girls in a mixed school do 0.168 of a standard deviation1 better than boys in
a mixed school. Girls in a girls’ school do 0.175 points better than girls in a
mixed school and (0.175 + 0.168) points better than boys in a mixed school.
Boys in a boys’ school do 0.18 points better than boys in a mixed school.

Adding these three parameters produced a reduction in the deviance of 35,
which, under the null hypothesis of no effects, follows a chi-squared distribu-
tion with three degrees of freedom. You can look this probability up using
the Tail Areas option on the Basic Statistics menu. The value is highly
significant.

In the 2×3 table of gender by school gender there are two empty cells because
there are no boys in a girls’ school and no girls in a boys’ school. We are
therefore currently using a reference group and three parameters to model a
four-entry table. Because of the empty cells the model is saturated, and no
higher-order interactions can be added.

The pupil gender and school gender effects modify the intercept (interpreted
when standlrt = 0). An interesting question is whether these effects change
across the intake score spectrum. To address this we need to extend the
model to include the interaction of the continuous variable standlrt with
our categorical pupil and school level gender variables. Let’s do this for the
school gender variable first.

� Click the Add Term button on the Equations window

� In the order box of the Specify term window, select 1 (for a first
order interaction)

� In the upper variable list box, select schgend

� In the lower variable list box, select standlrt

� Click Done

The Equations window will be automatically modified to include the two
new interaction terms. Run the model by pressing More on the main toolbar.

The deviance reduces by less than one unit. From this we conclude there is
no evidence of an interaction between the school gender variables and intake
score. You can verify that the same is true for the interaction of pupil gender
and intake score. Remove the school gender by intake score interaction as
follows:

� Click on either of the interaction terms (boysch.standlrt or
girlsch.standlrt)

1Recall that the normexam variable has been normalized to have a mean of 0 and a
standard deviation of 1 in the full sample, so predicted effects of pupil gender and school
gender will be in standard deviation units.
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� In the X variable window, click on the delete Term button

� You will be asked if you want to remove the two terms in the schgend
* standlrt interaction. Click Yes

6.2 Contextual effects of school intake ability

averages

The variable schav was constructed by first computing the average intake
ability (standlrt) for each school. Then, based on these averages, the bottom
25% of schools were coded 1 (low), the middle 50% were coded 2 (mid) and
the top 25% were coded 3 (high). Let’s include the two dummy variables
for this categorical school level contextual variable in the model.

� Click the Add Term button in the Equations window

� In the variable list box on the Specify term window, select schav

� Click Done

Run the model by clicking the More button. The Equations window will
now look like this:

Pupils in the low ability schools are the reference group. Children attend-
ing mid and high ability schools score 0.067 and 0.174 points, respectively,
more than reference group children. These effects are of borderline statistical
significance, however.
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Note that the deviance has been reduced by just 2.7 (9281.12− 9278.44)
compared with the model involving standlrt, pupil gender and school
gender. This change, when compared to a chi squared distribution with
two degrees of freedom is not significant.

This model assumes the contextual effects of school ability are the same across
the intake ability spectrum because these contextual effects are modifying
just the intercept term. That is the effect of being in a high ability school
is the same for low ability and high ability pupils. To relax this assumption
we need to include the interaction between standlrt and the school ability
contextual variables. To do this:

� Click on the Add Term button

� In the order box of the Specify term window select 1

� Select standlrt in the top variable list box

� Select schav in the lower variable list box

� Click Done

� Run the model by clicking the More button

The model converges to:

The slope coefficient for standlrt for pupils from low intake ability schools is
0.455. For pupils from mid ability schools the slope is steeper 0.455 + 0.092
and for pupils from high ability schools the slope is steeper still 0.455 +
0.18. These two interaction terms have explained variability in the slope of
standlrt in terms of a school level variable, therefore the between-school
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variability of the standlrt slope has been substantially reduced (from 0.015
to 0.011).

Note that the previous contextual effects boy sch, girl sch, mid and
high all modified the intercept and therefore fitting these school level
variables reduced the between school variability of the intercept (σ2

u0).

We now have three different linear relationships between the output score
(normexam) and the intake score (standlrt) for pupils from low, mid and
high ability schools. The prediction line for boys in mixed low ability schools
is

β̂0cons + β̂1standlrtij

The prediction line for boys in mixed high ability schools is

β̂0cons + β̂1standlrtij + β̂6highj + β̂8standlrt.highij

The difference between these two lines, that is the effect of being in a high
ability school (regardless of pupil and school gender) is

β̂6highj + β̂8standlrt.highij

We can create this prediction function to examine the impact of school ability
on students of different abilities:

� On the Model menu, select Predictions

� Click in turn on β6, β8

� In the output from prediction to list, select c30

� Press Ctrl-N and rename c30 to hilodiff

� Click Calc

We can plot this function as follows:

� Select the Customised graph window

� In the box in the upper left corner, select a new display, say D5

� In the y list select hilodiff

� In the x list select standlrt

� In the plot type list select line

� In the filter list select high

� Click Apply

� Click anywhere in the graph that appears

� Select the Titles tab of the Graph options window

� Type hilodiff in the y title box and standlrt in the x title box

� Click Apply
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This graph (below) shows how the effect of being in a high ability school
varies across the intake spectrum. On average, very able pupils being edu-
cated in a high ability school score 0.9 of a standard deviation higher in their
outcome score than they would if they were educated in a low ability school.
Pupils with intake scores below −1.7 fare better in low ability schools, i.e,
hilodiff takes more negative values as standlrt drops further below this
threshold. This finding has some educational interest but we will not pursue
that here.

We can put a 95% confidence band around this line by doing the following:

� Select the predictions window

� Change the multiplier of S.E. of from 1.0 to 1.96

� In the S.E. of list select fixed

� In the corresponding output to list select c31

� Click Calc

� Select the Customised graph window

� Select the error bars tab

� In the y errors + list select c31

� In the y errors − list select c31

� In the y error type list select lines

� Click Apply

This produces
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Save your worksheet.

Chapter learning outcomes

? What is meant by contextual effects

? How to set up multilevel models with interaction terms

? How to include confidence regions around predictions
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Chapter 7

Modelling the Variance as a
Function of Explanatory
Variables

7.1 A level 1 variance function for two groups

Back in Chapter 2 we tabulated normexam by gender and saw the following
results:

We observed that the SD of the normexam scores for girls (coded 1) is
lower than the SD for boys. Until now all the models we have used have
fitted a single random term at level 1 that assumes constant (homogenous)
level 1 variation. We may want to fit a model that replicates this table, that
is to directly estimate the means for boys and girls and to estimate separate
student level variances for each group. The notation we have been using so
far does not allow this because it assumes a common intercept β0 and a single
set of student level residuals ei with a common variance σ2

e . We need to use
a more flexible notation to build this model.

� Open the file tutorial.ws

In this chapter we do not switch to simple notation mode. The Equations
window with no model specified, with general notation mode looks like this:

89
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A new first line is added stating that the response variable is Normally dis-
tributed. We now have the flexibility to specify alternative distributions for
our response. We will explore these possibilities in later chapters.

� Click on the red y in the Equations window

The following window will appear:

� From the y drop-down list select normexam

� From the N levels drop-down list, select 1-i

� From the level 1(i) drop-down list that appears, select student

� Click Name

The Equations window should look like this:

Notice that with this more general notation, the β0 coefficient has an ex-
planatory variable x0 associated with it. The value that x0 takes determines
the meaning of the β0 coefficient. For example, if x0 was a vector of 1s then
β0 would estimate an intercept common to all individuals. In the absence of
other predictors, this would be an estimate of the overall mean. However, if
x0 contained a dummy variable, say 1 for boys and 0 for girls, then β0 would
estimate the mean for boys. In the Equations window β0x0 is coloured red,
indicating we have not yet assigned a variable to x0.

Recall that in our current model we do not want a common intercept; we
want separate terms for the boy and girl means. We can achieve this by
entering a dummy variable for boys and a second dummy variable for girls.
First, let’s create the boy dummy variable:
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� On the Data Manipulation menu, select Command interface

� In the box at the bottom of the Command interface window, type
the following commands:

� calc c12 = 1 - 'girl'

� name c12 'boy'

� Note: click Enter after typing each command and include the quo-
tation marks around the column names (boy and girl)

Now add the dummy variables to the model.

� Click the Add Term button in the Equations window

� In the variable list box on the Specify term window, select boy

� Click Done

� Use the same sequence of steps to enter the girl dummy into the
model

The Equations window now looks like this:

We now have two explanatory variables:

x0i: which is 1 if the ith student is a boy
x1i: which is 1 if the ith student is a girl

Coefficients β0 and β1 will estimate the means for boys and girls, respectively.

The next step is to introduce terms in the model for estimating separate
variances for both groups. To do this

� Click on the term β0x0i in the Equations window

The following window appears:
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To estimate a student level variance for boys:

� Check the box labelled i(student)

� Click Done

Repeat this procedure for girls:

� Click on the term β1x1i in the Equations window

� In the X variable window, check the box labelled i(student)

� Click Done

� Click the Name button in the Equations window

� Click the Estimates button in the Equations window

The Equations window should now look like this:

Both β0 and β1 now have i subscripts. Let’s examine the second line in the
Equations window:

normexami = β0iboyi + β1igirli

a little more closely. If the ith response is for a boy, then the value of girli
is zero and the second term on the right hand side disappears. Thus the
boys’ responses are modelled by the function β0 +e0i, where β0 estimates the
boys’ mean. Conversely the girls’ responses will be modelled by the function
β1 + e1i, where β1 estimates the girls’ mean
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The departures of the boys’ scores around their mean are given by the set
of residuals e0i. The departures of the girls’ scores around their mean are
given by a separate set of residuals e1i. The variance of the boys’ residuals
is var(e0i) = σ2

e0 and the variance of the girls’ residuals is var(e1i) = σ2
e1.

These relationships can be found in the bottom lines of the display, which
give the structure of the student level distributional assumptions. This part
of display resembles what we saw when we had two residuals (intercept and
slope) at the school level. The term σe01 therefore specifies the covariance at
the student level between the boy residuals and the girl residuals. However,
this covariance can only exist if some students are both boys and girls. This
is impossible, so we will remove the covariance term from the model. To do
this:

� Click on the term σe01 in the Equations window

� Click on the Yes button in the pop-up window that asks whether to
remove the term

We are now ready to run the model.

� Click the Start button

� Click Estimates

The results are as follows:

The boys’ and girls’ means agree exactly with the tabular output at the top of
the chapter. The table quotes SDs for the two groups; from the Equations
window we have the SD for girls as

√
0.94 = 0.97 and

√
1.05 = 1.03 for boys.

This all may seem like a lot of work to replicate a simple table. However,
the payoff is that when we work within the modelling framework offered in
the Equations window, many extensions are possible that are well beyond
the scope of simple tables.
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We have modelled the student level variance as a function of gender. The
function is

var(yi) = σ2
e0x0i + σ2

e1x1i (7.1)

where x0i is 1 if the ith student is a boy and 0 if the ith student is a girl.
Likewise, x1i is 1 if the ith student is a girl and 0 if the ith student is a boy.

Equation (7.1) simplifies to σ2
e0 for boys, since for boys x0i is always 1 and

x1i is always 0. Conversely, (7.1) simplifies to σ2
e1 for girls. It is instructive

to look at how we arrive at the functional form in (7.1). Our current model
is

yi = β0ix0i + β1ix1i

β0i = β0 + e0i

β1i = β1 + e1i

which can be rewritten as

yi = β0x0i + β1x1i + e0ix0i + e1ix1i (7.2)

What is the student level variation? It is the variance of any terms in the
model that contain student level residuals, that is the last two terms in
equation (7.2). Using basic theory1 about the variance of a linear combination
of random variables, we can express the student level variation as:

var(yi) = var(e0ix0i + e1ix1i)

= var(e0ix0) + 2cov(e0ix0i, e1ix1i) + var(e1ix1i)

= var(e0i)x
2
0i + 2cov(e0i, e1i)x0ix1i + var(e1i)x

2
1i

= σ2
e0x

2
0i + 2σe01x0ix1i + σ2

e1x
2
1i (7.3)

In our example σe01 is set to zero, because a student cannot be both a boy
and a girl, i.e, no student has both residuals. Also x0i and x1i are (0,1)
variables therefore x20i = x0i and x21i = x1i. The variance function in (7.3)
therefore simplifies to the variance function (7.1).

The notion of variance functions is a powerful one and is not restricted to
level 1 variances. Let’s look at the school level random intercept and slope
model we fitted in Chapter 4 from the point of view of variance functions.

1See, for example, Kendall & Stewart (1997)
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7.2 Variance functions at level 2

Let’s set up the random slopes and intercepts model again. In the Equations
window:

� Click the Clear button

� Click on y

� From the y drop-down list, select normexam

� From the N-levels drop-down list, select 2-ij

� From the level 2(j) drop-down list, select school

� From the level 1(i) drop-down list, select student

The Equations window now looks like this:

We are in the general notation mode therefore the β0 coefficient has an ex-
planatory variable x0 associated with it. To specify a common intercept we
will define x0 as a constant vector of 1s. The column called cons in the
worksheet contains such a vector of 1s, i.e, every pupil’s value for cons is 1.
To specify the random slopes and intercepts model, we begin by creating an
intercept that is random at both levels:

� Click on x0 in the Equations window

The X variable window appears:

� From the drop-down list select cons

� Tick the j(school) check box

� Tick the i(student) check box
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After you click on the Name button, followed by the + button twice, the
Equations window now displays:

This is the first multilevel model we fitted back at the end of Chapter 2,
written out in the more general notation. In Chapter 2 we wrote

yij = β0j + eij

β0j = β0 + u0j (7.4)

Substituting the second line of (7.4) into the first we have

yij = β0 + u0j + eij (7.5)

Taking the second and third lines from the current Equations window we
have

yij = β0ijx0

β0ij = β0 + u0j + e0ij (7.6)

Substituting the second line of (7.6) into the first, we have

yij = β0x0 + u0jx0 + e0ijx0 (7.7)

Given x0 is a vector of 1s we see that (7.7) is identical to (7.5).

Note that in (7.7) the student level residuals are given an additional 0
subscript. This indicates that these residuals are attached to explanatory
variable x0. This additional numbering, as we discussed earlier allows
for further sets of student level residuals attached to other explanatory
variables to be added to the model.

We can now continue to add the slope term to the model.
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� Click on the Add Term, opening the Specify term window

� Select standlrt from the variable drop-down list, and click Done

To allow the slope to vary randomly across schools:

� Click on the term β1x1 in the Equations window

� In the X variable window, tick the j(school) check box

� Click the Done button

� Click Start

We have now re-established the random slopes and intercept model. Remem-
ber that our aim is to explore level 2 variation from the variance function
perspective. In Chapters 4 and 5 we saw a fanning out pattern of the school
summary lines which tells us that schools are more variable for students with
higher levels of standlrt. Another way of saying this is that the between-
school variance is a function of standlrt.

Using the general notation in MLwiN we always specify the random variation
in terms of coefficients of explanatory variables. The total variance at each
level is thus a function of these explanatory variables. These functions are
displayed in the Variance function window.

� On the Model menu, select Variance function

� Click Name button in the Variance function window

The initial display in this window is of the level 1 variance.

In the present model we have simple (constant) variation at level 1, as the
above equation shows. Now look at the school level variation:

� In the level drop-down list, select 2:school

We get the following:
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The function shown is simply the variance of the sum of two random coeffi-
cients times their respective explanatory variables, u0jcons and u1jstandlrtij,
written out explicitly. This has the same form as the student level variance
function (7.3) that we derived earlier in the chapter, except es have now been
replaced by us as we are operating at level 2 not level 1. Given that cons
is a vector of ones, we see that the between-school variance is a quadratic
function of standlrt with coefficients formed by the set of level 2 random
parameters. The intercept in the quadratic function is σ2

u0, the linear term is
2σu01 and the quadratic term is σ2

u1. We can compute this function and the
Variance function window provides us with a simple means of doing this.

The columns in the window headed select, cons, standlrt and result are
for computing individual values of the variance function. Since standlrt is a
continuous variable it will be useful to calculate the level 2 variance for every
value of standlrt that occurs.

� In the variance output to list on the tool bar, select c30

� Click calc

Now you can use the Customised graph window to plot c30 against stan-
dlrt. The resulting graph (shown below) has had the y-axis rescaled to run
between 0 and 0.3. To do this, click anywhere in the Graph display win-
dow, then click on the Scale tab of the Graph Options window. Check
User defined scale, then change ymin to 0 and ymax to 0.3 and click
Apply.

The apparent pattern of greater variation between schools for students with
extreme standlrt scores, especially high ones, is consistent with the plot of
prediction lines for the schools we viewed earlier.
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We need to be careful about the interpretation of such plots. Polynomial
functions are often unreliable at extremes of the data to which they are fit-
ted. Another difficulty with using polynomials to model variances is that, for
some values of the explanatory variables, they may predict a negative overall
variance. To overcome this we can use nonlinear (negative exponential) func-
tions to model variance. This is an advanced topic, and for details see Yang
et al. (1999). However, we see that schools are more variable for students
with high standlrt scores. This corresponds to the fanning out pattern of
the school summary lines.

7.3 Further elaborating the model for the student-

level variance

We have already seen how to model student level variation as a function of
student gender. It might also be the case that the level 1 variation changes as
a function of standlrt. That is the magnitude of the departures of students
around their school’s summary line changes in some systematic way with
respect to standlrt.

Let’s look and see if the student level variance changes as a function of
standlrt. To do this we need to make the coefficient of standlrt random at
the student level:

� In the Equations window click on β1

� In the X variable window check the box labelled i(student) and
click Done
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This produces the following:

Now β1 has a school level random term u1j and a student level random term
e1ij attached to it. As we have seen, we can think of the variance of the u1j
terms, which is σ2

u1, in two ways. Firstly, we can think of it as the between-
school variation in the slopes. Secondly we can think of it as a coefficient in a
quadratic function that describes how the between-school variation changes
with respect to standlrt. Both conceptualisations are useful.

The situation at the student level is different. It does not make sense to think
of the variance of the e1ijs, that is σ2

e1, as the between-student variation in the
slopes. This is because a student corresponds to only one data point, and it
is not possible to have a slope through one data point. However, the second
conceptualisation where σ2

e1 is a coefficient in a function that describes how
between-student variation changes with respect to standlrt is both valid
and useful. This means that in models with complex level 1 variation we
do not think of the estimated random parameters as separate variances and
covariances. Instead we view them as elements in a function that describes
how the level 1 variation changes with respect to explanatory variables. The
Variance function window can be used to display this function.

� Run the model

� From the Model menu, select the Variance function window

� From the level drop-down list, select 1:student

� Click Name

This produces the following:
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As with level 2, we have a quadratic form for the level 1 variation. Let us
evaluate the function for plotting.

� In the variance output to drop-down list select c31

� Click calc

Let’s add the level 1 variance function to the graph containing the level 2
variance function.

� Select the Customised graph window

� Select the display (ds#) used to plot the level 2 variance function

� Add another data set with y as c31, x as standlrt, plotted as a red
line

� Click Apply

� To see the level 1 variance function, we need to rescale the y-axis to
run between 0 and 0.7

� Also change the y-axis label to variance

This produces the following plot:
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The lower curved line is the between-school variation. The higher straight
line is the between-student variation. If we look at the Equations window we
can see that σ2

e1 is zero to three decimal places. The variance σ2
e1 acts as the

quadratic coefficient in the level 1 variance function; hence we have a straight
line. The general picture is that the between-school variation increases as
standlrt increases, whereas between-student variation decreases with stan-
dlrt. This means the variance partition coefficient (school variance / [school
variance + student variance]) increases with standlrt. Therefore the effect
of school is relatively greater for students with higher intake achievements.

Notice, as we pointed out earlier, that for high enough levels of standlrt the
level 1 variance will be negative. In fact, in the present data set such values
of standlrt do not exist and the straight line is a reasonable approximation
over the range of the data.

The student level variance functions are calculated from 4059 points, that is
the 4059 students in the data set. The school level variance functions are
calculated from only 65 points. This means that there is sufficient data at
the student level to support estimation of more complex variance functions
than at the school level.

Let’s experiment by allowing the student level variance to be a function of
gender as well as standlrt. We can also remove the σ2

e1 term, which we have
seen is negligible.

� Add girl to the model

� In the Equations window click on β2

� Check the box labelled i(student)
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The level 1 matrix Ωe is now a 3× 3 matrix.

� Click on the σ2
e1 term.

� You will be asked if you want to remove the term from the model.
Click Yes

� Do the same for σe12 and σe02

� Run the model

When you remove terms from a covariance matrix in the Equations window
they are replaced with zeros. You can put back removed terms by clicking
on the zeros.

Notice that the new level 1 parameter σ2
e2 is estimated as −0.054. You

might be surprised at seeing a negative variance. Remember, however, that
at level 1 the random parameters cannot be interpreted separately; instead
they are elements in a function for the variance. What is important is that
the function does not go negative within the range of the data.

Note that MLwiN will allow negative values by default for individual
variance parameters at level 1. However, at higher levels the default be-
haviour is to reset any negative variances and all associated covariances
to zero. These defaults can be over-ridden in the Estimation con-
trol window available by pressing the Estimation control on the main
toolbar.

Now use the Variance function window to display what function is being
fitted to the student level variance.

From the Equations window we can see that {σ2
e0, σe01, σ

2
e2} = {0.583,

−0.013, −.054}. Substituting these values into the function shown in the
Variance function window we get the student level variance for the boys:

0.583− (0.026× standlrt)

For the girls, the variance is:

0.583− 0.054− (0.026× standlrt)
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Note that we can get the mathematically equivalent result by fitting the
model with the following terms at level 1: σ2

e0, σe01, σe02. This is left as
an exercise for the reader.

The line describing the between-student variation for girls is lower than the
boys’ line by 0.054. It could be that the lines have different slopes. We can
see if this is the case by fitting a more complex model for the level 1 variance.
In the Equations window:

� In the level 1 covariance matrix click on the right hand 0 on the
bottom line

� You will be asked if you want to add term standlrt/girl. Click Yes

� Run the model

We obtain the following estimates for the level 1 parameters {σ2
e0, σe01, σe12, σ

2
e2}={0.584,

−0.034, 0.032, −0.058}, and the updated variance function window now looks
like this:

The level 1 variance for boys is now:

0.584 + (2× (−0.034)× standlrt) = 0.584− (0.068× standlrt)

For girls we get:

0.584+(2×(−0.034)+2×(0.032))×standlrt−0.058 = 0.526−0.004×standlrt

We can see the level 1 variance for girls is fairly constant across standlrt. For
boys the level 1 variance function has a negative slope, indicating the boys
who have high levels of standlrt are much less variable in their attainment.
We can graph these functions:

� In the Variance function window choose c31 in the output to:
list

� Click calc

� Select the Customised graphs window
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� Select the data set: y = c31 and x = standlrt

� In the group list select girl

� Click Apply

This produces the following graph:

We see that the student level variance for boys drops from 0.8 to 0.4 across
the spectrum of standlrt, whereas the student level variance for girls remains
fairly constant at around 0.53.

We are now forming a general picture of the nature of the variability in our
model at both the student and school levels of the hierarchy. The variability
in schools’ contributions to students’ progress is greater at extreme values
of standlrt, particularly positive values. The variability in girls’ progress
is fairly constant. However, the progress of low intake ability boys is very
variable but this variability drops markedly as we move across the intake
achievement range.

These complex patterns of variation give rise to intra-school correlations that
change as a function of standlrt and gender. Modelling such intra-unit
correlations that change as a function of explanatory variables provides a
useful framework when addressing substantive questions.

Fitting models that allow complex patterns of variation at level 1 can produce
useful substantive insights. For example, if from our modelling we know the
achievement of some types of student varies considerably, we can infer that
amongst this group of students there will be more students at the extremes
of achievement. Consequently, the call on resources for special needs will
probably be higher where schools have higher proportions of such students.
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Also, where there is very strong heterogeneity at level 1, failing to model
it can lead to a serious model mis-specification. In some cases the mis-
specification can be so severe that the simpler model fails to converge. In
such situations, when the model is extended to allow for a complex level
1 variance structure, convergence occurs. Usually the effects of the mis-
specification are more subtle; you may find, for example, that failure to
model complex level 1 variation can lead to inflated estimates of higher-level
variances (that is, between-student heterogeneity becomes incorporated in
between-school variance parameters).

Chapter learning outcomes

? Use of the general notation in MLwiN

? That variance functions provide a useful means for interpreting vari-
ability at the different levels in our model.

? How to construct and graph variance functions in MLwiN

? A more complex interpretation of intra-unit correlations
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Getting Started with your Data

In the previous chapters we have used a prepared example data set. This
chapter describes how to get your own data into MLwiN. We also give some
advice on commonly experienced problems that occur once you start to fit
models to your data.

8.1 Inputting your data set into MLwiN

MLwiN can only input and output numerical data. Data can be input from
and output to files or the clipboard. For version 2.02 input/output is from/to
text files. Version 2.10 additionally allows input from Stata (*.dta), SPSS
(*.sav), and Minitab (*.mtw) worksheets, and also allows MLwiN worksheets
to be saved in these formats. For documentation see Section 6 of the Manual
Supplement for MLwiN Version 2.10.

Reading in an ASCII text data file

If you have data prepared in ASCII format, you may use the ASCII text
file Input option from the File menu to input them. Clicking on this option
brings up the following window:

To read in your data set do the following:

107
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� In the Columns box type the column numbers into which the data
are to be read. If columns are consecutively numbered, you can refer
to the range of columns by typing the first and last separated by a
‘-’, e.g. c2-c6.

� In the File box, you can either type the full path and name for the
data file or click the Browse button to display the folder structure
and allow you to make a selection. (Note that file names are not
restricted to having particular extensions such as .txt.)

� If the data are delimited by spaces, commas or tabs, and if each
record contains the same number of variables, then clicking on OK
will read the data into the specified columns.

If the data in each record have the same format, i.e, fixed width variables,
you will probably want to specify the input format to MLwiN. Doing so is
particularly useful in order to skip certain fields that will not be needed in
a modelling session. Checking the Formatted box opens up a Format box
into which you type the data format — a string of comma-separated integers.

Note that you do not tell MLwiN in the Format box about the number
of decimal places used for each variable.

MLwiN recognises two formatting codes: x (a positive integer) means “read
a variable of width x characters”, and −y means “skip (ignore) y charac-
ters”. So, for example, to skip the first character in the file, read two 3-digit
numbers, skip two characters, and read a 1-digit number, you would type the
following in the box: −1, 3, 3,−2, 1

Writing data to a specified text file operates in a similar way through the
ASCII text file output option. If the data are not formatted, each case’s
values for the different variables are separated by spaces in the output file.

If any data item in a data column contains non-numeric characters, then that
data column will be converted to a categorical variable. If a column contains
a mixture of data items where some items are numbers and other items
are repeated instances of a single textual pattern, containing non-numeric
characters (e.g. *), then that textual pattern is treated as a code for missing
data.

Common problems that can occur in reading ASCII
data from a text file

Some common problems that can occur with the inputting of ASCII text files
are:
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� The data file includes a list of column names at the top; some packages
save the column names to the top of the data file when using the Save
option.

� The data file contains missing values that were converted to either
blank spaces or illegal characters when the file was saved in another
package.

� The data file uses ‘,’ rather than ‘.’ to represent a decimal point. Al-
though MLwiN will display worksheets using whichever representation
is set on a computer, when inputting data from another package, the
‘.’ must be used.

� The number of columns given in the ASCII text file input window’s
Columns box does not correspond to the number of columns present
in the input file.

All of these sources of data input errors can be checked by viewing the data
set using the software package that the data are being exported from, or by
looking at the data file with a word processor. To correct the data, remove
any headers containing variable names or other information and use the soft-
ware’s Find and Replace feature to globally convert any illegal characters. If
the data contain missing values, it is sensible to convert these to a unique
value, for example −999 that can then be exploited after the data have been
successfully input into MLwiN. We will say more about missing values later
in this chapter.

If you have a very large data set, make sure that you have specified a large
enough worksheet size using the Settings window — accessed by selecting
the Worksheet option on the Options menu. It is also a good idea to input
a large data set in several stages, i.e, reading a subset of the variables each
time (into consecutive sets of worksheet columns).

Pasting data into a worksheet from the clipboard

If you have your data in another package such as EXCEL or SPSS it may
often be more convenient to copy your data from these packages and then
paste them into MLwiN. If you have copied data onto the clipboard from
another application then they can be pasted into MLwiN through the Paste
option on the Edit menu1. For example, if we have a 2 by 3 table of numbers
in the clipboard and we select Paste, the following window appears:

1Or using the Paste button on the Names window; for documentation see Section
8.2.4 of the Manual Supplement for MLwiN Version 2.10
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This window allows you to view the data and assign it to MLwiN columns.
You can select the next free columns on the worksheet by pressing the Free
Columns button. You can also choose which MLwiN columns the data are
to be assigned to by clicking in the top row of the data table and selecting
MLwiN columns from the list that appears.

If the first row of your pasted data contains variable names, then checking
the Use first row as names box will assign these names to the MLwiN
copies of the variables.

As in the case of reading ASCII data from a file, if you have a very large data
set, make sure that you have specified a large enough worksheet size before
you start pasting in the data. It is also a good idea to paste data in stages
(into consecutive sets of columns).

Naming columns

When using the ASCII text file input option, MLwiN does not allow
the user to input the column names directly from the file into a worksheet.
Columns can instead be named using the Names window, which is accessed
via the Data Manipulation menu. The figure below shows an example of
a data set as it appears in the Names window before variable names have
been assigned to the worksheet columns.

A column to be (re)named is selected by clicking on its column number (c1,
c2, c3 etc.) in the column headed Name. The selected column’s (current)
name is displayed in the text box on the toolbar where it can be edited
to specify any desired name. After editing, pressing return updates the
column’s name.
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Adding category names

When a variable is categorical, names can also be given to the individual cat-
egories. This is useful because it allows MLwiN to create and name dummy
variables for analysis, and to annotate tables etc. Suppose column c4 in the
above data set has been named gender. We can declare gender to be a cat-
egorical variable by selecting gender in the Names window and clicking the
Toggle Categories button. We can then name the categories by pressing
the Categories button. This produces the following window:

Clicking in the name column and typing text beside each category value
allows category names to be assigned.

Missing data

MLwiN assigns a single code value for any missing data. The default value
is a large negative number (−9.999E+29) called the system missing value.
The numerical value to represent missing data can be set by the user in the
bottom box on the Numbers tab of the Settings window. (This window is
accessed from the Options menu by choosing Worksheet.) You may have
input data containing a specific missing value code, −99, say. In this case
you should set MLwiN’s missing data value to −99.

Note that before inputting the data to MLwiN, it is helpful to check that
you have used the same missing value code for every variable and that the
code you have chosen is not a legitimate value for any of your variables.

When a user specifies a missing value code such as −99, all occurrences of
that value in the data set are changed to MLwiN’s system missing value. If
the value you specified as a missing value code is a legitimate value for some
of your variables, MLwiN will not make the distinction. There is a 1-step
recovery if you change your mind about your choice of missing value code.
If you reset the missing code, you will be prompted to see whether you wish
your previous code to revert to its original value. If not, then the old and
new codes are treated as missing.

Note that you can also use the Recode variables window to change
a missing value to another code. (See HELP for instructions on doing
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this.) Note also that the Calculate window allows the missing code to
be used in logical expressions.

It is important to understand that missing data are automatically ignored
in model fitting and that a likelihood ratio statistic comparing two models
with different amounts of missing data is not valid. The Equations window
reports how many cases were used in each model.

Unit identification columns

MLwiN holds numbers in single precision; this allows 6 digits of precision.
Sometimes unit identification columns contain very long numbers, e.g, 10000001,
10000002 etc. Since these numbers (in this example) vary only in the 8th
digit, they will be indistinguishable to MLwiN. Normally, if long numbers
such as these were to be used in arithmetic calculations, the indistinguisha-
bility would not be a problem. However, if the numbers are used to denote
different units, e.g, schools, then there is a problem. When you import data
and MLwiN encounters a variable whose values have more than 6 digits of
precision, you will be offered the option of converting the variable to a cate-
gorical variable. This means that the numbers read in are treated as category
labels and each distinct label is given an integer number from 1 to m, where
m is the number of distinct labels.

Saving the worksheet

Once you have input and named your data, you should save your data as
an MLwiN worksheet using the Save worksheet option on the File menu.
While working with MLwiN it is well worth saving your worksheet at regular
intervals as a backup. (When you fit a series of different models to the same
data, you may want to save each step’s work in a different worksheet using
the Save worksheet As option.)

Sorting your data set

The most common mistake new users make when trying to fit a multilevel
model to their data set is that they do not sort the data set to reflect the
data’s hierarchical or nested structure. (This is an easy mistake to make.)
All the examples in this manual have already been sorted into the correct
structure — students within schools, in the case of the data set used in the
previous chapters.
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The data must be sorted so that all records for the same highest-level unit
are grouped together and within this group, all records for a particular lower
level unit are contiguous. For example the following represents the first few
records of a sorted three-level data set:

Level 3 ID Level 2 ID Level 1 ID
1 1 1
1 1 2
1 1 3
1 2 1
1 2 2
1 2 3
2 1 1
2 1 2

The Sort window (see below), accessed via the Data Manipulation menu,
can be used to reorder data records.

We assume that the level 1, 2 and 3 identifiers of our model are stored in
columns c1, c2 and c3, respectively and that the response and all predictor
variables can be found in columns c4 to c10. To sort this data structure
correctly, we need to set the following on the Sort window as shown here:
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A full explanation of how to use both the Sort window and other data
manipulation windows can be found in the on-line Help system.

Note that all of the columns to be sorted (c1 to c10 in this illustration)
must be of the same length and must contain data for the sort operation
to work correctly.

Many users ask why the software cannot sort the data itself, and there are
several reasons for this. Firstly the software doesn’t know which columns the
user wants to sort. Secondly because of choices made in assigning unit iden-
tification codes within the data set, it may not be possible to automatically
take columns of data that are appropriately sorted for fitting a particular
model and perform an unambiguous re-sorting to create a hierarchy suitable
for fitting a different model. To see this, consider the above table of sorted
data and suppose that instead of a fitting a 3 level model we wanted to drop
level 3. We would then have several student records that have the same level
2 ID (1, in this case), but which do not actually belong to the same level 2
unit. In an educational scenario they could be from class 1 in school 1 and
from class 1 in school 2, i.e, distinct classes.

Once you have sorted your data and set up a model, you should check the
Hierarchy viewer (accessed from the Model menu) to ensure that the data
structure that the software reports — in terms of number of units at each
level — is as you expect.
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8.2 Fitting models in MLwiN

Once you have input the data into MLwiN named the columns and saved
the worksheet, it is often tempting to go straight ahead and fit a really
complicated model with lots of fixed and random effects. Then you may
well come across several problems, for example the model does not converge,
has numerical problems or gives unexpected answers. The main piece of
advice here is that multilevel modelling is like any other type of statistical
modelling and a useful strategy is to start by fitting simple models and slowly
increase the complexity. In the rest of this section we will list some of the
main pointers that should be followed to reduce frustration while trying to
fit multilevel models in MLwiN.

What are you trying to model?

It is important before starting to fit models to your data set to know as much
as possible about your data and to establish what questions you are trying
to answer. It is important to identify which variable(s) are your response
variable(s) of interest. It is also important to establish, particularly if you are
new to multilevel modelling, what is meant by the terms: levels, predictors,
fixed effects and random effects, and to identify which variables in your data
set contain ID codes for units, i.e. represent levels, and which are measured
variables. If you are not sure what these terms mean, then you need to work
through Chapters 1 to 6 of this manual before proceeding with your own
data.

Do you really need to fit a multilevel model?

It is always a good idea to do some more basic statistical analysis before pro-
ceeding on to multilevel modelling. Plotting the response variable against
several predictors will allow you to examine graphically whether there are
any strong relationships. Fitting simple single level models before proceeding
to multilevel models is also a good idea, particularly as the fixed effects esti-
mates from a single level model should generally be similar to those achieved
by a corresponding multilevel model.

One point to note is that just because a model has more levels, more fixed
effects and more random effects this does not automatically mean that it will
be a better model. Often the opposite is true. A distinction should be made
here between trying to fit a multilevel model to a data set that is too small
and to a data set where there is no higher-level variation. A data set that
only has 4 level 2 units is best fitted as a single level model with the level
2 units included as 3 dummy variables. Fitting a multilevel model to this



116 CHAPTER 8.

data will almost certainly report no level 2 variation. However, this is not a
generalisable statement; we simply have not sampled enough level 2 units.

Have you built up your model from a variance compo-
nents model?

A sensible way of fitting a multilevel model is to start with the basic variance
components model (as in the tutorial example). Then you can build up
models of increasing complexity by adding predictors that are deemed to be
important and checking whether they have substantial and / or significant
fixed or random coefficients. If instead you add lots of predictors into your
model and have convergence problems, it may be difficult to establish which
predictor is causing the problem. Building up a model by adding variables
one at a time and using the MORE option rather than START also has
less chance of producing convergence problems with the IGLS and RIGLS
estimation methods. This is because the estimates from the last model fitted
are used as starting values for the new model.

Have you centred your predictor variables?

If your data set contains continuous predictor variables, there are several
benefits to be gained from centring them, i.e, subtracting a variable’s mean
from each case’s value of that variable. The primary benefit in so doing is
that it often makes interpretation of the intercept term in the model easier,
as it is now the predicted value for a subject that has average values for
each explanatory variable. This is generally more useful than the response
value for a subject with zero for all predictors, because zero may not be a
typical value for the corresponding explanatory variable. Centring predictor
variables can also reduce the chances of numerical errors in the IGLS and
RIGLS estimation methods and reduce the correlation in the chains produced
by MCMC methods.

Chapter learning outcomes

? How to input data into MLwiN

? How to sort data and set missing values

? How to set up categorical variables

? How to avoid some of the common mistakes users can make when
modelling data
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Logistic Models for Binary and
Binomial Responses

9.1 Introduction and description of the ex-

ample data

So far, we have considered multilevel models for continuous response vari-
ables. In this chapter, we look at models for binary or binomial (proportion)
responses. We begin with a discussion of single-level models for binary re-
sponses, focusing on the popular logit model but giving a brief discussion of
other link functions such as the probit. We then show how the single-level
model can be extended to handle data with a two-level hierarchical struc-
ture, leading to a two-level random intercepts logistic model. Significance
testing and model interpretation using odds ratios and variance partition co-
efficients are discussed. Next we consider a random coefficient (slope) model
for binary data. Finally, we illustrate how logistic models can be fitted when
the response is a proportion (i.e, binomial) rather than binary and discuss
models that allow for extra-binomial variation.

The data for the examples in this chapter are a sub-sample from the 1989
Bangladesh Fertility Survey (Huq & Cleland, 1990). The binary response
variable that we consider refers to whether a woman was using contraception
at the time of the survey. The full sample was analysed in Amin et al. (1997),
but with a multinomial response that distinguished between different types of
contraceptive method. In Chapter 10 we will consider the same multinomial
response. The aim of the analysis in this chapter is to identify the factors
associated with use of contraception and to examine the extent of between-
district variation in contraceptive use. The data have a two-level hierarchical
structure, with 2867 women nested within 60 districts.

We will begin by opening the MLwiN worksheet bang.ws using the Open

117
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Worksheet option from the File menu. The following Names window will
be displayed:

The variables are defined as follows:
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Variable Description
woman Identifying code for each woman (level 1 unit)
district Identifying code for each district (level 2 unit)

use Contraceptive use status at time of survey
1 using contraception
0 not using contraception

use4 Contraceptive use status and method
1 Sterilization (male or female)
2 Modern reversible method
3 Traditional method
4 Not using contraception
lc Number of living children at time of survey
0 None
1 1 child
2 2 children
3 3 or more children

age Age of woman at time of survey (in years), centred on the sample
mean of 30 years

urban Type of region of residence
1 Urban
0 Rural

educ Woman’s level of education
1 None
2 Lower primary
3 Upper primary
4 Secondary+

hindu Woman’s religion
1 Hindu
0 Muslim

d lit Proportion of women in district who are literate
d pray Proportion of Muslim women in district who pray every day (a

measure of religiosity)
cons constant vector

In this chapter we will analyse the binary response use. The multinomial
response use4 will be analysed in Chapter 10.

9.2 Single-level logistic regression

Link functions

We will begin by fitting a single-level logistic regression model with a single
explanatory variable xi. The binary (0,1) response for the ith unit (here,
woman) is denoted by yi. We denote the probability that yi = 1 by πi. A
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general model for binary response data is:

f(πi) = β0 + β1xi

where f(πi) is some transformation of πi, called the link function. Popular
choices for the link function are:

The logit link, i.e, f(πi) = log
(

πi
1−πi

)
, where the quantity πi/(1 − πi) is the

odds that yi = 1.

The probit link, where f(πi) = Φ(πi) is the cumulative density function of
the standard Normal distribution.

The complementary log-log link, i.e, f(πi) = log(− log(1− πi)). We will call
this the clog-log link, but it is sometimes referred to as the log-log link.

All of the above transformations ensure that predicted probabilities π̂ derived
from the fitted model will lie between 0 and 1. In practice, the significance
of coefficients and predictions of π are fairly robust to the choice of link
function. The logit transformation tends to be most widely used1, mainly
because the exponentiated coefficients from a logit model can be interpreted
as odds ratios. For this reason, we will focus on logit models in this chapter,
although we will show how other link functions can be fitted in MLwiN.

The logit model takes the form:

logit(πi) = log

(
πi

1− πi

)
= β0 + β1xi (9.1)

Interpretation of coefficients

Taking exponentials of each side of (9.1), we obtain:

πi
1− πi

= eβ0 × eβ1xi (9.2)

If we increase x by 1 unit, we obtain:

πi
1− πi

= eβ0 × eβ1(xi+1) = eβ0 × eβ1xi × eβ1

This is the expression in (9.2) multiplied by eβ1 . Therefore eβ1 can be inter-
preted as the multiplicative effect on the odds for a 1-unit increase in x. If x

1The probit transformation is also popular, particularly in economics. See Collett
(1991) for a comparison of the logit, probit and clog-log link functions.
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is binary (0,1), then eβ1 is interpreted as the odds ratio, comparing the odds
for units with x = 1 relative to the odds for units with x = 0.

If we rearrange (9.2), we obtain an expression for πi:

πi =
exp(β0 + β1xi)

1 + exp(β0 + β1xi)
=

1

1 + exp(−(β0 + β1xi))
(9.3)

One way of interpreting a fitted model is to compute predicted probabilities
for a range of values of x, substituting the estimates of β0 and β1 in (9.3).

Fitting a single-level logit model in MLwiN

We will begin by examining the relationship between contraceptive use (use)
and number of living children (lc). Before carrying out a logistic regression
analysis, we can examine a tabulation of the percentage using contraception
(and not using contraception) by number of children:

� From the Basic Statistics menu, select Tabulate

� Next to Columns, select use from the pull-down list

� Check Rows and select lc from the pull-down list

� Under Display, check Percentages of row totals

� Click Tabulate

You should obtain the following table of percentages:
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From this table, we see that the percentage using contraception is markedly
lower for women with no children compared to women with one or more
children.

We will now model this relationship by fitting a single-level model to the
binary response variable use and including dummy variables for lc as ex-
planatory variables.

� From the Model menu, select Equations

� Click on the Name button

� Click on y and in the Y variable window, make the following selec-
tions:
y: use
N levels: 1-i
level 1(i): woman

� Click done

� Click on the N in the Equations window

� In the Response type window, select Binomial as the distribution
and logit as the link function.

� Click Done

� Click on x0, select cons from the drop-down list presented and click
Done

� Click on the Add term button, and from the variable drop-down
list, select lc.

� Click Done

� Click Estimates

Note that the default link function is the logit, but notice that the probit
and clog-log links are other options.

Note that when this example worksheet was prepared lc was declared to
be a categorical variable. Therefore MLwiN automatically enters dummy
variables when lc is selected as an explanatory variable. By default, the
first category (lc0) which corresponds to ‘no children’ is taken as the
reference.

The Equations window should look like this:
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Since lc has four categories, three dummy variables have been added to the
model.

The first line in the Equations window states that the response variable
follows a binomial distribution with parameters ni and πi. The parameter ni
is known as the denominator. In the case of binary data, ni is equal to 1 for
all units. We will now create ni and call the new variable denom.

� From the Data Manipulation menu, select Generate vector

� In the Generate Vector window, for Output column, select c17

� For Number of copies, type 2867

� For Value, type 1

� Click Generate, and close the window

� From the Data Manipulation menu, select Names

� In the Name column of the Names window, select c17

� Click the Edit name button, type denom and press return

� Now in the Equations window, click on ni

� In the specify denominator window, select denom from the drop-
down list

� Click Done

Note that if our data had been binomial (i.e, in the form of proportions)
then ni would be equal to the number of units on which the proprtion
is based. For example, if πi was the proportion of women who used
contraception in district i then ni would be the number of women of
reproductive age in district i.

The second line in the Equations window is the equation for the logit model,
which has the same form as (9.1) since x0 = 1 for all women. (This is the
cons variable created by MLwiN.) If you click on the Name button, you
will see the variable names.

Before fitting the model, we have to specify details about the estimation
procedure to be used. The estimation choices will be discussed when we
come to fit multilevel models.
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� Click on the Nonlinear button at the bottom of the Equations
window

� In the Nonlinear estimation window, click on Use Defaults, then
Done

Now to fit this model:

� Click Start

After clicking on Estimates twice you should see the following:

The last line in the Equations window states that the variance of the bi-
nomial response is πi(1 − πi)/denomi, which in the case of binary data,
simplifies to πi(1− πi).

The variables lc1, lc2 and lc3plus are indicators for ‘1 child’, ‘2 children’,
and ‘3+ children’ respectively. The fitted model has the equation:

logit(πi) = −1.123 + 0.933lc1i + 1.093lc2i + 0.872lc3plusi

We can calculate odds ratios, comparing the categories coded 1, 2 or 3 with
the category coded 0, simply by taking exponentials of the coefficients of
lc1, lc2 and lc3plus. Also shown are Z-ratios, which can be compared with
a standard Normal distribution to carry out pairwise tests of differences
between categories 1, 2 or 3 and category 0.

Category of lc β S.E. Z=β/SE eβ

None 0 - - 1
1 0.933 0.122 7.65 2.54
2 1.093 0.125 8.74 2.98
3+ 0.872 0.103 8.47 2.39

Women with children have a significantly higher odds (or probability) of using
contraception than women without children. The odds of using contraception
increases with number of children (with a slight decrease for 3 or more), but
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the largest shift is between 0 and 1 children. The odds of using contraception
for a woman with one child are 2.54 times the odds for a woman with no
children. We could also calculate odds ratios comparing pairs of lc categories
that do not involve the reference category. For example, the odds of using
contraception for a woman with two children are 2.98/2.54 = 1.17 times the
odds for a woman with one child.

We can also use the estimated coefficients to calculate predicted probabilities
of contraceptive use for each category of lc. For example, using equation
(9.3), the probability of using contraception for a woman with one child is
estimated as:

π̂ =
1

1 + exp(−(−1.123 + 0.933))
= 0.45

The predicted probabilities for each category of lc are given below.

Category of lc π̂
None 0.245
1 0.453
2 0.492
3+ 0.438

Notice that the predicted probabilities of using contraception agree with the
sample proportions listed in the table of percentages shown earlier.

Since the estimated coefficients for lc categories 1 and 2 are fairly similar, we
might want to test whether there is a difference between these categories in
the probability of using contraception.2 We can carry out a Wald test to test
the null hypothesis that β1 = β2 (where β1 and β2 are the coefficients of lc1
and lc2 respectively). The null hypothesis can also be written β1 − β2 = 0,
or in matrix form as (

1 −1
)( β1

β2

)
= 0

To carry out the test in MLwiN:

� From the Model menu, select Intervals and tests

� At the bottom of the Intervals and tests window, click the radio
button next to fixed

� Next to # of functions, we retain the default of 1

2The estimate for lc3plus is also close to the estimates for lc1 and lc2, so we might
wish to test for a difference between all three categories. For our illustration, however, we
will restrict the comparison to categories 1 and 2.
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� Edit the values next to lc1 and lc2 in column #1 as shown below

After clicking Calc, you should obtain a test statistic (joint chi sq test(1df),
which appears where before you pressed Calc it said Chi sq. for joint con-
trasts) of 1.548 on 1 d.f. We can compute a p-value as follows:

� From the Basic Statistics menu, select Tail Areas

� Next to Value, type 1.548

� Next to Degrees of freedom, type 1

� Click Calc

The p-value is 0.213, so we conclude that the difference in the probability of
using contraception between women with 1 child and women with 2 children is
not significant at the 5% level. We would therefore be justified in simplifying
the model by collapsing categories 1 and 2 of lc, but we will retain the
existing categories here.

A probit model

We can fit a probit model with the same explanatory variables, simply by
changing the link function in the Equations window from logit to probit.

� Click on logit in the Equations window

� In the Response type window, under Select link function, check
probit

� Click Done
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� Click on Start to fit this model

You should see the following results:

Notice that although the magnitudes of the coefficients have changed, they
are in the same direction as in the logit model. The pattern in the effect of
lc is also the same as in the logit model. If you were to calculate Z statistics,
you would find that these are also very close to those obtained from the logit
model. We will thus consider only logit models from now on.

� Click on probit in the Equations window, and under Select link
function check logit

� Click Done

� Click Start to re-fit the logit model

We will also add a further explanatory variable, age, to the model.

� In the Equations window, click Add term

� In the Specify term window, select age from the variable drop-
down list

� Click Done

� Click More to fit the new model

The results are as follows:

We can see that the probability of using contraception decreases with age,
adjusting for the effect of number of children. This effect is statistically
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significant at the 5% level; we leave you to carry out the Wald test as an
exercise.

9.3 A two-level random intercept model

Model specification

We will now extend our model to allow for district effects on the probabil-
ity of using contraception. We begin with a random intercept or variance
components model that allows the overall probability of contraceptive use to
vary across districts. Our binary response is yij which equals 1 if woman i
in district j was using contraception, and 0 if she was not. Similarly, a j
subscript is added to the proportion so that πij = Pr(yij = 1). If we have a
single explanatory variable, xij, measured at the woman level, then (9.1) is
extended to a two-level random intercept model as follows:

logit(πij) = β0j + β1xij

β0j = β0 + u0j (9.4)

As in a random intercept model for a continuous response, the intercept
consists of two terms: a fixed component β0 and a district-specific component,
the random effect u0j. As before, we assume that the u0j follow a Normal
distribution with mean zero and variance σ2

u0.

Estimation procedures

For discrete response multilevel models, maximum likelihood estimation is
computationally intensive, and therefore quasi-likelihood methods are im-
plemented in MLwiN. These procedures use a linearisation method, based
on a Taylor series expansion, which transforms a discrete response model to
a continuous response model. After applying the linearisation, the model is
then estimated using iterative generalised least squares (IGLS) or reweighted
IGLS (RIGLS). See Goldstein (2003) for further details. The transformation
to a linear model requires an approximation to be used. The types of ap-
proximation available in MLwiN are: marginal quasi-likelihood (MQL) and
predictive (or penalized) quasi-likelihood (PQL). Both of these methods can
include either 1st order terms or up to 2nd order terms of the Taylor series
expansion. The 1st order MQL procedure offers the crudest approximation
and may lead to estimates that are biased downwards, particularly if sample
sizes within level 2 units are small or the response proportion is extreme. An
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improved approximation procedure is 2nd order PQL, but this method is less
stable and convergence problems may be encountered. It is for this reason
that in the analysis below we begin with the 1st order MQL procedure to ob-
tain starting values for the 2nd order PQL procedure. Intermediate choices,
1st order PQL and 2nd order MQL, are also often useful. Further details of
these quasi-likelihood procedures can be found in Goldstein (2003).

An alternative to likelihood-based estimation procedures is to use a Monte
Carlo Markov Chain (MCMC) method, also implemented in MLwiN. In
MCMC Estimation in MLwiN (Browne, 2003), there is a tutorial in which
these Bangladesh contraceptive use data are reanalysed using MCMC meth-
ods.

Fitting a two-level random intercept model in MLwiN

We will now extend the model fitted at the end of Section 9.2 to a random
intercept model. We first need to declare that the data have a two-level
hierarchical structure, with district at the higher level, and then allow the
intercept β0 to vary randomly across districts.

� Click on usei to open the Y variable window

� Change N levels: from 1-i to 2-ij

� Next to level 2(j): select district from the drop-down list

� Click Done

� Now click on cons (or its coefficient β0) in the Equations window

� Check j(district) in the X variable window

� Click Done

You should see the following window (you may need to click on Estimates
first):

The model displayed has the same form as (9.4), but with additional ex-
planatory variables to allow for the effects of lc. A new line has appeared,
stating that the random effects u0j follow a Normal distribution with mean
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zero and covariance matrix Ωu, which for a random intercept model consists
of a single term σ2

u0.

� Click on Start to fit this model

� When the model has been fitted, click on Estimates twice to see
the results

The above results are obtained using the default estimation procedure, 1st
order MQL. As this procedure may lead to estimates that are biased down-
wards, the 2nd order PQL procedure is preferred. To change the estimation
procedure:

� Click on the Nonlinear button at the bottom of the Equations
window

� Under Linearisation, select 2nd Order

� Under Estimation type, select PQL

� Click Done

� Click More to fit the model

Note that clicking More rather than Start means that the 1st order
MQL estimates will be used as starting values in the 2nd order PQL pro-
cedure. Because convergence problems may be encountered when using
PQL it is advisable to use MQL first and then extend to PQL.

You should obtain the following estimates that, in this case, are not very
different from the 1st order MQL estimates:
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The conclusions regarding the effects of age and number of living children
are unchanged by allowing for district-level variation, although the standard
errors for the coefficients of the lc dummy variables have increased slightly.

The intercept for district j is −1.466 + u0j, where the variance of u0j is
estimated as 0.308 (SE = 0.079).

For continuous response models, we described how a likelihood ratio test
could be used to test the significance of σ2

u0. For discrete response models,
estimated using quasi-likelihood methods, the likelihood value is unreliable
and so the likelihood ratio test is unavailable. An alternative is to carry
out a Wald test, although this test is approximate, as variance parameters
are not Normally distributed. A preferred approach is to construct interval
estimates for variance parameters using bootstrap or MCMC methods. See
Chapter 3 in Goldstein (2003) and Chapter 4 in Browne (2003). To carry
out a Wald test in MLwiN:

� From the Model menu, select Intervals and tests

� Check random at the bottom of the Intervals and tests window

� Type a 1 next to district:cons/cons (this refers to the parameter
σ2
u0)

� Click on Calc

The test statistic is 15.267, which we compare to a chi-squared distribution
on 1 d.f. We therefore conclude that there are significant differences between
districts.

Variance partition coefficient

In Chapter 2, we met the variance partition coefficient (VPC) which for a
two-level random intercept model is the proportion of total residual variance
which is attributable to level 2, i.e, σ2

u0/(σ
2
u0 + σ2

e). For a random intercept
model fitted to continuous data, the VPC is equal to the intra-unit corre-
lation, which is the correlation between two level 1 units in the same level
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2 unit. For random coefficient models, the VPC and intra-unit correlation
are not equivalent. In the case of binary and other discrete response models,
there is no single VPC measure since the level 1 variance is a function of
the mean, which depends on the values of the explanatory variables in the
model. For example, if yij is binary then V ar(yij) = πij(1− πij). Therefore
the VPC itself will depend on the explanatory variables. Goldstein et al.
(2002) propose several alternative approaches for computing a VPC for dis-
crete response data. For those who are interested, a simulation method is
described below.

Step 1: From the fitted model, simulate M values for u0j from N(0,σ̂2
u0).

Denote these simulated values by u
(m)
0j (m=1, 2, . . . , M)

Step 2: For a given value of xij, x* say, compute π
∗(m)
j =

exp(β̂0+β̂1x∗+u
(m)
0j )

1+exp(β̂0+β̂1x∗+u
(m)
0j )

.

Also, compute v
∗(m)
1j = π

∗(m)
j (1− π∗(m)

j )

Step 3: The level 1 variance is then calculated as the mean of the v
∗(m)
1j

(m=1, 2, . . . , M), and the level 2 variance is the variance of the π
∗(m)
j

An MLwiN macro (contained in the file vpc.txt) has been written to imple-
ment this simulation method, with M = 5000. We will consider an example
shortly.

An alternative VPC measure is obtained if the logistic model is cast in the
form of a linear threshold model. We assume that there is a continuous
unobserved variable y∗ij underlying our binary response yij, such that yij = 1
if y∗ij ≥ 0 and yij = 0 if y∗ij < 0. The unobserved variable y∗ij can be thought
of as the propensity to be in one category of the binary response rather than
the other, e.g., the propensity to use contraception. The model in (9.4) can
be written in terms of y∗ij as

y∗ij = β0 + β1xij + u0j + eij

where eij follows a logistic distribution with variance π2/3 ≈ 3.29. (If a
probit link is used, then eij follows a Normal distribution with variance 1.)
So the VPC can be computed as σ2

u0/(σ
2
u0 + 3.29). See Snijders & Bosker

(1999) for further details.

Note that the two methods of calculating the VPC described above will
give different results. This is because the estimate obtained using the
simulation method is on the probability scale and depends on covariates
while the measure derived from the threshold model is on the logistic
scale and hence does not depend on covariates.

We now consider an example. Before running the macro in vpc.txt, we have
to do the following:
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1. set values for the explanatory variables and store these in c151, and

2. set values for the explanatory variables which have random coefficients
at level 2 and store these in c152. (This will be a subset of c151.)

In the model above, we have five explanatory variables (including cons). We
will begin by computing the VPC for a woman of mean age with no children
(i.e, cons = 1, lc1 = 0, lc2 = 0, lc3plus = 0 and age = 0). To do this
we begin by entering the values (1,0,0,0,0) in c151. In a random intercept
model, only cons has a random coefficient, so we input the value 1 in c152.
To create these two columns:

� From the Data Manipulation menu, select View or edit data

� Click on View, select c151, and click OK

� Input the values 1,0,0,0, and 0 respectively into the first five rows
of c151

� Click on View again, select c152, and click OK

� Input the value 1 in the first row of c152

The macro contains the following sequence of MLwiN commands:

� c153=(~c151)*.c1098

� pick 1 c153 b2

� calc c153=(~c152)*.omega(2)*.c152

� pick 1 c153 b4

� seed 1

� nran 5000 c154

� calc c154=alog(c154*b4^0.5+b2)

� aver c154 b1 b3 b2

� calc c154=c154*(1-c154)

� aver c154 b5 b1

� calc b8=b2^2/(b1+b2^2)

To run this macro:
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� From the File menu, select Open Macro

� Open the file vpc.txt

� In the window that shows you these commands, click on Execute

The result of running the macro, i.e, the value of the VPC, will be stored in
a worksheet box called B8. To print the contents of the box:

� From the Data Manipulation menu, select Command Interface

� In the space at the bottom of the
Command interface window, type

� print b8

� Press Enter

You should get a value of approximately 0.048. Therefore, among women of
mean age with no children 4.8% of the residual variation is attributable to
differences between districts.

To get an idea of the range of the VPC for different values of the explanatory
variables, we could compute the VPC for extreme combinations of values. For
example, young women with three or more children have a high probability
of using contraception, while older women with no children have a low prob-
ability of using contraception. The table below gives values for the VPC for
these two extreme combinations:

cons lc1 lc2 lc3plus age (centred) VPC
High probability of use 1 0 0 1 -9.7 0.069
Low probability of use 1 0 0 0 15.3 0.040

Using a threshold representation of the model, we obtain a VPC of 0.308/(0.308+
3.290) = 0.086. So approximately 5% to 10% of the residual variance in con-
traceptive use is attributable to differences between districts.

Adding further explanatory variables

We will now add in the remaining woman-level explanatory variables: urban,
educ and hindu.

� Use the Add term button (and Specify term window) three times
to add these variables to the model
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Education has already been declared as a categorical variable, so dummy
variables for three of the categories will be added. Accept the default in
which the first category (‘no education’) is taken as the reference.

When you have fitted this new model (using More), you should obtain the
following results:

The effects of age and number of living children change slightly, but the
general conclusions are the same. Higher education levels, living in an urban
area rather than a rural area, and being Hindu rather than Muslim are all
positively associated with use of contraception.

Note that urban is an individual level variable (as can be seen from
the ij subscript), since there are urban and rural areas within a district.
Comparing estimated coefficients with their standard errors, we find that
all effects are significant at the 5% level.

The between-district variance has decreased from 0.308 to 0.234, so some of
the variation in contraceptive use between districts is explained by differences
in their education, urban/rural and religious composition.

9.4 A two-level random coefficient model

So far, we have allowed the probability of contraceptive use to vary across
districts, but we have assumed that the effects of the explanatory variables
are the same for each district. We will now modify this assumption by
allowing the difference between urban and rural areas within a district to vary
across districts. To allow for this effect, we will need to introduce a random
coefficient for urban. The model we will be fitting has the same form as the
random slopes model considered in Chapter 4, but since the variable urban
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has only two categories, we use the more general term coefficient rather than
slope to describe its effect. To introduce a random coefficient for urban:

� In the Equations window, click on urban (or its coefficient)

� In the X variable window, check j(district) and click Done

The model has the following form (you may have to click on Estimates to
see the notation):

A j subscript has been added to the coefficient of urban, indicating that
the coefficient depends on district. The average effect of urban is β5, but
the effect for district j is β5j = β5 + u5j where u5j is a Normally distributed
random effect with mean zero and variance σ2

u5. Allowing the coefficient of
urban to vary across districts has also introduced the parameter σu50, which
is the covariance between u0j and u5j.

As for continuous response random coefficient models, the level 2 variance
is a function of the explanatory variables that have random coefficients. In
Chapter 7, we met variance functions and the same ideas can be applied to
any multilevel model. For the model specified above, the residual variance
between districts is a function of urban:

var(u0j + u5jurban) = var(u0j) + 2cov(u0j, u5j)urban + var(u5j)urban2

= σ2
u0 + (2σu50 + σ2

u5)urban (9.5)

Note that because urban is a (0,1) variable, urban2 = urban. For rural
areas (urban = 0), the residual district level variance is σ2

u0. For urban
areas (urban = 1), the residual district level variance is σ2

u0+2σu50+σ2
u5.
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� Click More to fit the random coefficient model

� Click Estimates to see the estimated coefficients and their standard
errors

We can test the significance of the added parameters, σ2
u5 andσu50, using a

Wald test:

� From the Model menu, select Intervals and tests

� Choose random in the Intervals and tests window

� Next to # of functions, type 2

� Edit the values next to district: urban/cons and district: ur-
ban/urban as shown below

� Click Calc
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The test statistic is 5.471, which is approximately chi-squared distributed
on 2 d.f. (p = 0.065). At the 10% level, we conclude that both parameters
are non-zero, which implies that the effect of urban does indeed vary across
districts.

On average (after adjusting for the effects of age and the other explanatory
variables), the log-odds of using contraception are 0.574 higher for urban
areas than for rural areas. Depending on the value of u5j, the difference in a
given district will be larger or smaller than 0.574.

Substituting the estimates of σ2
u0, σ

2
u5 and σu50 into (9.5), we obtain the

following estimates of residual district-level variation:

For rural areas: district-level variance = 0.360

For urban areas: district-level variance = 0.360 + 2(−0.258) + 0.349 = 0.193

So there is greater district-level variation in the probability of using contra-
ception in rural areas than in urban areas.

We will now add in our two district-level explanatory variables, d lit and
d pray, to see whether they explain some of the district-level variation in
urban and rural areas. Use the Add term button to add both variables to
the model, and click More to fit the model.

You should get the following results:

The effect of the proportion of literate women in the district has a positive,
but non-significant effect on the probability of using contraception. District-
level religiosity has a significant effect, with women living in districts with
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higher levels of religiosity being less likely to use contraception.

The residual between-district variation is now 0.305 for rural areas and
0.305 + 2(−0.233) + 0.352 = 0.191 for urban areas. Some of district-level
variation in rural areas is explained by differences in religiosity, but the vari-
ation in urban areas is almost unchanged.

9.5 Modelling binomial data

So far, we have considered logistic models for binary response data, but
the same models may be used to analyse binomial data, where the response
variable is a proportion. For illustration, we will convert the binary woman-
level contraceptive use variable to district-level proportion data. We will
then model the proportion of contraceptive users in a district as a function
of the district-level explanatory variables and district-level random effects.
Of course in practice, since in this case we have individual-level data and we
know that there are important individual-level predictors of contraceptive
use, we would not want to aggregate the data in this way. If, however, we only
had access to aggregate data then it is more efficient to model the proportions
directly rather than converting to individual-level binary responses.

Modelling district-level variation with district-level pro-
portions

Our response variable yj will be the sample proportion of contraceptive users
in district j. After aggregating our data to the district level, the only other
change to the model is that the denominator nj will no longer equal 1 as
for binary data, but will equal the number of women of reproductive age in
district j.

Although our response variable is now at the district level, we can still fit a
two-level random intercept model of the form:

logit(πij) = β0j + β1d litj + β2d prayj

β0j = β0 + u0j

where πij is the probability of using contraception for woman i in district
j as before. When we specify the model, we will use the aggregate district
ID as the identifier for both level 1 and level 2. This implies a model with
60 level 2 units (districts), each with one level 1 observation. This might
appear, at first glance, to produce a confounded model. However, we should
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remember that each level 1 unit has an associated denominator nj, which
is the number of women in the district. It is this associated woman-level
information, together with the fact that the level 1 variance depends on the
explanatory variables in the model, which prevents the model from being
confounded 3.

Creating a district-level data set

First we need to clear the current model settings.

� In the Equations window, click on the Clear button

� From the Data Manipulation menu, select Command interface

� At the bottom of the Command interface window, type:

� erase 'denom' 'cons'

� Press return

We will now create a district-level data set. We will begin by creating the
response variable yj and the denominator nj:

� From the Data Manipulation menu, select Multilevel data ma-
nipulations

� In the Multilevel Data Manipulations window, under Opera-
tion, select Average

� For On blocks defined by, select district

� For Input columns, select use

� For Output columns, select c20

� Click Add to action list.

� Check that your window looks like the one below, then click Execute

� Then change Operation to Count (Don’t worry about what hap-
pens in the Input columns section)

� For Output columns, select c21

� Click Add to action list, followed by Execute

3If the nj were equal across districts and no explanatory variables were included in the
model, then it would not be possible to identify district-level variation.
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The columns c20 and c21 contain the response variable and denominator
respectively. However, they still contain a record for each woman, where the
values for women in the same district are replicated. To see this

� From the Data Manipulation menu, select View or edit data

� Select district, c20 and c21 (Use ctrl-click to make multiple selec-
tions.)

We will next convert c20 and c21 so that they have one record per district,
and at the same time create district-level versions of district, d lit and
d pray.

� From the Data Manipulation menu, select unreplicate to open
the Take data window

� For Take first entry in blocks defined by, select district from
the drop-down list

� For Input columns, select the variables district, d lit, d pray,
C20 and C21 (using ctrl-click)

� For Output columns, select c22-c26

� Click Add to action list.

� Check that your window looks like the one below, then click on Ex-
ecute
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� Using the Names window, give the following names to c22-c26 (in
order): district1, d lit1, d pray1, prop and denom

The final step in setting up the data is to create a new cons variable:

� From the Data Manipulation menu, select Generate vector

� In the Generate Vector window, check Constant vector

� For the Output column, select C27

� For Number of copies, type 60 (the number of districts)

� For Value, type 1

� Click Generate

� In the Names window, give c27 the name cons

Fitting the model

We can now set up the model:

� In the Equations window, first click on y. In the Y variable win-
dow, select:
y: prop
N levels: 2-ij
Level 2(j): district1
Level 1(i): district1

� Click done, and return to the Equations window

� Click on N. In the Response type window, select binomial and
logit, then Click Done



9.5. MODELLING BINOMIAL DATA 143

� Click on nij, and in the specify denominator window, select de-
nom. Click Done

� Click on x0

� Select cons from the X variable window’s drop-down list, and check
both Fixed parameter and j(district1)

� Click Done

� Click Add term and select d lit1. Click Done

� Click Add term and select d pray1. Click Done

� Click Nonlinear and check Use Defaults (1st order MQL). Click
Done

� Click Start to fit the model

Now change to 2nd order PQL using the Nonlinear button, and Click More.
You should get the following results:

Note that we would have got exactly the same results had we fitted
a random intercepts model to the binary response variable use, with
only an intercept plus the district level explanatory variables d lit and
d pray.

Chapter learning outcomes

? How to specify a binary response model in MLwiN via the Equations
window

? The fact that standard likelihood methods cannot be used for binary
response models, so quasi-likelihood methods are used instead

? The interpretation of fixed effects is more complicated in binary re-
sponse models
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? How to fit a general Binomial model where the response is a propor-
tion



Chapter 10

Multinomial Logistic Models
for Unordered Categorical
Responses

10.1 Introduction

In many studies, the response variable of interest is categorical. In Chapter 9
we considered multilevel models for binary categorical responses. The logistic
models described there may be extended to permit response variables with
more than two categories, but the type of model we fit depends on whether
the categories are ordered or unordered. Examples of ordered responses are
attitude scales (e.g. with categories going from ‘strongly disagree’ to ‘strongly
agree’) and exam grades. Examples of unordered responses include political
affiliation and cause of death. In this chapter, we introduce the multinomial
logistic model for unordered categorical responses. In Chapter 11 we examine
models for ordered responses.

We will now re-analyse the contraceptive use data set from Bangladesh (in
bang.ws) that was introduced in Chapter 9. In our earlier analysis, the
response variable was a binary indicator for use of contraception at the time
of the survey. In any serious study of contraceptive behaviour, however,
we would wish to distinguish between different methods of contraception,
particularly between modern or efficient methods (e.g. pills and IUDs) and
traditional or inefficient methods (e.g. withdrawal). In this chapter, our
response is an unordered categorical variable that distinguishes between dif-
ferent types of method among users. Our response variable is use4, which
is coded as follows:

145
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use4 Contraceptive use status and method
1 Sterilization (male or female)
2 Modern reversible method
2 Traditional method
4 Not using contraception

All other variables in bang.ws are described in Section 9.1.

To see the frequency distribution of use4, open bang.ws in MLwiN, then

� From the Basic Statistics menu, select Tabulate

� Check Percentages of column totals

� Next to Columns, select use4 from the drop-down list

� Click Tabulate

You will see that 10.5% of women (or their husbands) were sterilized, 19.4%
were using a modern reversible method (mainly pills in Bangladesh), 9.8%
were using a traditional method, and 60.3% were not using any contraception.
In our analysis, we will be interested in determining the factors associated
with use of these different types of method (or non-use).

10.2 Single-level multinomial logistic regres-

sion

Suppose that yi is the unordered categorical response for individual i, and
that the response variable has t categories. We denote the probability of being
in category s by π

(s)
i = Pr(yi = s). In a multinomial logistic model, one of the

response categories is taken as the reference category, just as the category
coded ‘0’ is usually taken as the reference category in a binary response
model. A set of t-1 equations is then estimated, contrasting each of the
remaining response categories with the chosen reference category. Suppose
that the last category is taken as the reference. Then, for a single explanatory
variable xi, a multinomial logistic regression model with logit link is written:

log

(
π
(s)
i

π
(t)
i

)
= β

(s)
0 + β

(s)
1 xi, s = 1, . . . , t− 1 (10.1)

A separate intercept and slope parameter is usually estimated for each con-
trast, as indicated by the s superscripts, although it is possible to constrain
some or all to be equal. In the model above, the same explanatory variable
appears in each of the t− 1 contrasts. Although this is usual practice, and a



10.3. SINGLE-LEVEL MULTINOMIAL LOGISTIC MODEL 147

requirement in some software packages, models where the set of explanatory
variables differs across contrasts can be estimated in MLwiN.

The parameter β
(s)
1 is interpreted as the additive effect of a 1-unit increase

in x on the log-odds of being in category s rather than category t. As in the
binary logit model, it is more meaningful to interpret exp(β

(s)
1 ), which is the

multiplicative effect of a 1-unit increase in x on the odds of being in category
s rather than category t. However, an easier way to interpret the effect of x
is to calculate predicted probabilities π

(s)
i (s = 1, . . . , t) for different values of

x.

The following expression for π
(s)
i (s = 1, . . . , t−1) can be derived from (10.1):

π
(s)
i =

exp(β
(s)
0 + β

(s)
1 xi)

1 +
t−1∑
k=1

exp(β
(k)
0 + β

(k)
1 xi)

(10.2)

The probability of being in the reference category t is obtained by subtrac-
tion:

π
(t)
i = 1−

t−1∑
k=1

π
(k)
i (10.3)

Model interpretation using both odds ratios and predicted probabilities will
be considered in the example that follows.

10.3 Fitting a single-level multinomial logis-

tic model in MLwiN

We will begin by fitting a model with a single covariate, the number of living
children (lc). First, we will look at a cross-tabulation of use4 and lc to see
how the decision to use contraception and the choice of method depends on
number of children in our sample.

� From the Basic Statistics menu, select Tabulate

� Check Percentages of row totals

� Next to Columns, select use4 from the drop-down list

� Check Rows, and select lc from the drop-down list

� Click Tabulate
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You should see this table in the Output window:

In Chapter 9, we saw that the probability of contraceptive use was much
higher among women with one or more child than among those without chil-
dren. Here we see that, among contraceptive users, the type of method cho-
sen also varies with number of children. For example, as would be expected,
women with no children are unlikely to choose sterilization. Women with
one or two children are the most likely to use a modern reversible method;
the lower probability of modern reversible use among women with three or
more children is likely to be due to factors associated with high fertility.

We will now model this relationship using a multinomial logistic regression
model of the same form as (10.1). As in Chapter 9, we will include as
explanatory variables three dummy variables for lc, taking the first category
‘no children’ as the reference.

We will start by declaring use4 to be categorical and attaching labels to its
categories:

� From the Data Manipulation menu, select Names

� In the Names window, highlight use4 and click on Categories

� For category 1, type ster in the name column

� Give the following names to categories 2, 3 and 4: mod, trad and
none (as shown in the figure below)

� Click OK
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We can now set up the model:

� In the Equations window, click on the Name button

� Click on y and make the following selections in the Y-variable win-
dow:
y: use4
N levels: 1-i
level 1(i): woman

� Click done

� Click on the N in the Equations window

� In the Response type window, scroll down and select Multinomial

� We will use the defaults of logit link function and the unordered
multinomial option

� Next to ref category:, select none from the drop-down list

� Click Done

� Click on Add term and, under variable, select cons

� Click add Separate coefficients

� Click on Add term again, select lc, and click add Separate coef-
ficients

� Click Name

� Click Estimates

The Equations window should look like this:

Before going any further, we will take a moment to explain the notation
used in the Equations window and how it relates to equation (10.1). The
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model we have specified above has the same form as (10.1), but with three
explanatory variables for the effects of lc. Notice, however, that although we
have specified a single-level model, all variables have two subscripts, i and j.
In MLwiN the single-level multinomial model is framed as a two-level model,
with response categories at level 1 and individuals at level 2.

The categorical variable use4 has been transformed to three binary variables
(corresponding to categories 1, 2 and 3). These are stacked to form a new re-
sponse variable named resp, a column that has 3×2867 = 8601 observations.
This new variable has a two-level structure with three binary responses per
woman.

If you click on resp ij in the Equations window, you will see that N levels:
has changed to 2-ij, with woman long as the level 2 ID and resp indicator
as the level 1 ID. The variable woman long is a ‘long’ version of woman,
with each value of woman copied three times to obtain a column that is
the same length as resp. The variable resp indicator is also automatically
created when a multinomial model is specified in MLwiN.

To see how resp and resp indicator are constructed, look at the values of
use4 for the first three women. They are 4 (none), 1 (ster) and 4 (none).
Now look at the first few values of the variables resp and resp indicator:

For each woman, we have three values of resp, corresponding to categories
1 (ster), 2 (mod) and 3 (trad), respectively. The reference category (none)
is omitted. These values are stacked, and a category indicator is stored
in resp indicator. The variable resp has two subscripts — to index the
response category (i) and the woman (j). For woman j, resp ij= 1 if use4
= i, and 0 otherwise (i= 1, 2, 3). For example, for a woman using a modern
reversible method (category 2) the three values of resp are 0, 1 and 0. As
we saw in the Data window, the first woman in the data set is not using
contraception, so her values of resp are (0, 0, 0). The second woman is
sterilized, so she has values (1, 0, 0).

Returning to the Equations window, the first line says that the binary
variable resp follows a multinomial distribution, which has parameters nj
and πij. As in Chapter 9, we have a denominator nj which must be specified.
In the case where the individual is our lowest level of observation and we have
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one observation per individual, nj = 1. More generally, our responses may
be proportions, for example the proportion in each category of use4 in an
area. In that case, nj would be the population size in area j.

Parameter πij is the probability (predicted by the model, from individual j’s
pattern of explanatory variables) that individual j is in response category i.
The remaining lines in the Equations window specify three pairwise con-
trasts between each of the response categories 1 (ster), 2 (mod) and 3 (trad)
and the reference category 4 (none). Each equation includes a constant term,
cons*, and three dummy variables for number of living children, lc1*, lc2*
and lc3plus*, where the suffix (the replacement for *) indicates the response
category being contrasted with the reference category in that equation.

To illustrate how these variables are created, we will consider the first con-
trast (sterilization vs. none). First cons.ster is constructed from resp indicator
as follows:

cons.ster = 1 if resp indicator = 1 (i.e, ster)

= 0 otherwise

Then ‘long’ versions of lc1, lc2 and lc3plus are created by repeating each
of their values three times, in the same way that woman long was created
from woman. Each of these ‘long’ variables is then multiplied by cons.ster
to obtain lc1.ster, lc2.ster and lc3plus.ster.

Although the same set of variables is included in each contrast, it is possible
to exclude an explanatory variable from one or more contrasts. To remove
an explanatory variable, click on the variable in the equation for the contrast
from which it is to be excluded and click on the X variable window’s Delete
term button.

The last line in the Equations window shows the terms in the variance-
covariance matrix for respij. See Chapter 4 in Goldstein (2003) for further
details.

To complete the model specification, we need to declare nj (see Section 9.2).
For a binary response model, nj is a vector of 1s. The constant vector cons
has the required structure.

� In the Equations window, click on nj and select cons from the
drop-down list

� Click Done

To fit the model:
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� Click on the Nonlinear button at the bottom of the Equations
window

� Click on Use defaults, then Done

� Click on Start

After clicking on Estimates twice, you should see the following output:

We can carry out approximate significance tests on the coefficients of the
dummy variables for lc by dividing the estimated coefficients by their stan-
dard errors and comparing these quotients to a unit Normal distribution.
Here, the coefficients of lc1, lc2 and lc3plus are all large relative to their
standard errors, so we conclude that having children shows a statistically sig-
nificant effect on the probability of using any type of contraceptive method.

To interpret the effects of lc on contraceptive choice, we take exponentials
of the estimated coefficients of lc1, lc2, and lc3plus to obtain odds ratios
as follows:

Ster. Vs. None Mod. vs. None Trad. vs. None
Category of lc β exp(β) β exp(β) β exp(β)
None 0 1 0 1 0 1
1 2.192 8.95 0.747 2.11 0.747 2.11
2 2.666 14.38 0.691 2.00 1.063 2.90
3+ 2.576 13.14 0.208 1.23 1.101 3.01

From the odds ratios we can see, for example, that the probability of choosing
sterilization increases sharply as lc changes from no children to one child. The
odds of using sterilization rather than no method are 8.95 times higher for
women with one child than for women with no children.

Note that this odds ratio could have been obtained directly from the cross
tabulation of use4 and lc. For example:

(# with 1 child using sterilisation) / (# with 1 child using no method)

(# with 0 children using sterilisation) / (# with 0 children using no method)

=
52/283

12/584
= 8.94
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For any method, the probability of use increases as the number of children
increases from 0 up to 2. There is a slight decrease in the probability of using
a modern method (either permanent or reversible) for women with three or
more children, compared to women with two children.

When there are several response categories, it is often easier to interpret a
fitted model by calculating predicted probabilities for different values of an
explanatory variable, while holding constant the values of other explanatory
variables. These probabilities are calculated using (10.2) and (10.3). For the
simple model above, a macro (in the file predprob.txt) has been written to
compute predicted probabilities for a given category of lc.

To use these macros, we need to input values for the dummy variables lc1,
lc2 and lc3plus into c50. We will begin by computing probabilities of
contraceptive use for women with no children (i.e, lc1 = 0, lc2 = 0, lc3plus
= 0).

� From the Data Manipulation menu, select View or edit data

� Click on View, select c50, and Click OK

� Input the values 0, 0, and 0 into the first 3 rows of c50

To run the macro:

� From the File menu, select Open Macro

� Open the file predprob.txt

� In the window that opens showing the macro commands, click on
Execute

� The predicted probabilities of being in categories 1 to 4 of use4 will
be stored in columns labeled p1 to p4

� From the Data Manipulation menu, select Command Interface

� Type

� print 'p1'-'p4'

You should get the following values:
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Notice that these are the same as the sample proportions in each category
of use4 for lc = 0 (see the cross-tabulation of use4 and lc). Changing
the values in c50 to (1,0,0) and rerunning the macro will give predicted
probabilities corresponding to lc = 1. We leave this as an exercise for the
reader.

10.4 A two-level random intercept multino-

mial logistic regression model

The data in bang.ws have a two-level hierarchical structure with women
at level 1, nested within districts at level 2. In Chapter 9, the single-level
model for the binary response use was extended to allow for district effects
on the probability of using contraception. In a similar way, the single-level
model for unordered categorical responses such as use4 can be extended to
two levels.

Suppose that yij is the categorical response for individual i in district j, and

denote the probability of being in category s by π
(s)
ij . Equation (10.1) can be

extended to a two-level random intercept model:

log

(
π
(s)
ij

π
(t)
ij

)
= β

(s)
0 + β

(s)
1 xij + u

(s)
j , s = 1, ..., t− 1 (10.4)

where u
(s)
j is a district-level random effect, assumed to be Normally dis-

tributed with mean 0 and variance σ
2(s)
u . The random effects are contrast-

specific, as indicated by the s superscript, because different unobserved
district-level factors may affect each contrast. Or, equivalently, the intra-
district correlation in contraceptive use may vary by type of method. How-
ever, the random effects may be correlated across contrasts: cov(u

(s)
j , u

(r)
j ) =

σ
(s,r)
u , s 6= r. Correlated random effects would arise, for example, if there

were unobserved district-level factors which affect the choice of more than
one method type.

As with binary response models, different procedures have been implemented
in MLwiN for the estimation of multilevel models that have categorical re-
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sponses: quasi-likelihood methods (MQL / PQL, 1st or 2nd order) and
MCMC methods. See Section 9.2 of this manual and Browne (2003) for fur-
ther discussion. We shall use the quasi-likelihood methods in this chapter,
starting with 1st order MQL and extending to 2nd order PQL on conver-
gence.

10.5 Fitting a two-level random intercept model

To extend the current single-level model to a two-level random intercept
model:

� Click on resp ij, and change N levels: from 2-ij to 3-ijk

� Next to level 3(k):, select district from the drop down list and click
Done

� Now click on cons.ster (or its coefficient), check k(district long)
in the X variable window and click Done

� Next, click on cons.mod, check k(district long) and click Done

� Finally, click on cons.trad, check k(district long) and click Done

After clicking on Estimates, the Equations window should look like this:

Just as a single-level model was formulated as a two-level model in MLwiN,
a two-level model is formulated as a three-level model, hence the three sub-
scripts ijk. The additional k subscript indicates the district. The district-level
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random effects, denoted by u
(s)
j (s= 1, 2, 3) in (10.4), are v0k, v1k and v2k in

MLwiN with variance-covariance matrix Ωv.

Fit the model using the default 1st order MQL procedure. You should see
the following:

Now change to 2nd order PQL:

� Click on the Nonlinear button

� Change from MQL to PQL

� Change from 1st order to 2nd order

� Click Done

� Click More

You should get these results:

Notice that there are some sizeable differences between the 1st order MQL
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and 2nd order PQL estimates, particularly for the random part parameters.
For multinomial logit models, the 1st order MQL approximation may produce
severely biased estimates. Users are advised to use 2nd order PQL or MCMC
methods (see Browne (2003); Chapter 20).

In each of the three contrasts, the estimate of district-level variance is large
relative to its standard error, suggesting that there is unexplained district-
level variation in the use of each type of contraception method. The random
effect covariances are all positive, indicating that districts with high (low)
use of one type of method also tend to have high (low) use of other methods.
It would be easier, however, to interpret the correlations rather than the
covariances. To obtain the district-level correlations:

� From the Model menu, select Estimate tables

� Select Level 3: district long from the drop-down list that currently
shows FIXED PART

� Also at the top of the Estimates window, check C and uncheck S,
E, S and P

Note that these checkboxes (S, E, S, P, C, and N) control what is displayed
in the table. Click Help for more details

You should see the following correlation matrix:

The highest correlation at the district level is between use of sterilization
and use of modern reversible methods, which would be expected since both
of these types of method are promoted by family planning programmes. The
correlation between use of sterilization and use of traditional methods is also
high.

We will now look at residual estimates to further explore the extent of district-
level variation and to see if there are any ‘outlying’ districts with high or low
contraceptive prevalence, after adjusting for differences in fertility. To obtain
estimates and plots of the three sets of district-level residuals:

� From the Model menu, select Residuals

� At the bottom of the Residuals window, next to level:, select 3:dis-
trict long
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� Change the SD(comparative) multiplier to 1.96 and click Calc
The residuals corresponding to the contrasts for sterilization, modern
and traditional versus none are output to c300, c301 and c302,
respectively

� From the Data Manipulation menu, select Names

� Assign the name res ster to c300, res mod to c301 and res trad
to c302

� Now return to the Residuals window and click on the Plots tab

� Select residual +/− 1.96 sd x rank and click Apply

You should see a figure like the one on the next page containing three ‘cater-
pillar’ plots. These show residual estimates with 95% confidence intervals.

To identify districts with particularly large (small) prevalences of use of par-
ticular contraception methods, we can highlight them in the plots as follows:

� In the first plot, click on the confidence interval for the district with
the largest positive residual, i.e, the highest prevalence of sterilization.

� The Identify point window will appear, informing you that this point
corresponds to district ID 56.

� Under In graphs click on highlight(style 1), then Apply.

� The residual estimates for the district with ID=56 will be highlighted
in red in all 3 plots. Notice that this district also has the highest preva-
lence of modern reversible methods and high prevalence of traditional
methods.
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Repeating the above steps for the district with the largest negative residual
for sterilization, using a different highlighting style, reveals that the district
with ID=11 has the lowest prevalence not only of sterilization but of modern
and traditional methods. The tendency for districts to have a similar ranking
for all three types of method is reflected in the positive correlations between
district random effects.

The next step in the analysis would be to add further explanatory variables
and, in particular, to examine whether the district-level indicators of liter-
acy and religiosity can explain district-level variation in use of the different
contraceptive methods. We leave this as an exercise for the reader.

Chapter learning outcomes

? How to formulate single-level and multilevel multinomial models

? How to specify and fit such models in MLwiN

? How to interpret the results from such models
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Chapter 11

Fitting an Ordered Category
Response Model

11.1 Introduction

Many kinds of response variables take the form of ordered category scales.
Attitude measurements, examination grades and disease severity are just a
few examples of such variables. Very often in analyses, scores are assigned to
the categories, and these scores are treated as if they are measurements on
a continuous scale. Typically, however, such scoring systems are arbitrary,
and information may be lost or distorted in the conversion. An alternative
approach is to retain the categories throughout the analysis. The example
analyses presented in this chapter show how this can be done — first using a
single-level model, then with a multilevel model. A more detailed discussion
of models with ordered categorical responses can be found in Goldstein (2003)
and Yang & Woodhouse (2001).

The example data set: chemistry A level grades

The data used in our example are taken from a large data set comprising the
results of all A level GCSE examinations in England during the period 1994
to 1997 (Yang & Woodhouse, 2001). For present purposes, we have chosen
results for chemistry from one examination board in 1997. We have data
from 2166 students in 219 educational institutions.

Open the data file alevchem.ws, and you will see the following list of vari-
ables:

161
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The variables are defined as follows:

Variable Description
lea Local Education Authority (not used in this analysis)
estab Institution identification
pupil Pupil identification
a-point A level point score (see below for description)
gcse-tot Total point score for GCSE exams taken two years earlier
gcse-no Number of GCSE exams taken
cons Constant (= 1)
gender 1 if female, 0 if male

The codes in the variable a-point correspond to the following grades: 1 =
F; 2 = E; 3 = D; 4 = C; 5 = B; and 6 = A. The standard procedure when
analysing such examination data is to use a scoring system that assigns a
value 0 to grade F, a value 2 to grade E, and finally a value 10 to grade A
and then treats this as a continuous response variable.

11.2 An analysis using the traditional approach

To provide a point of comparison for the categorical response models, we
will begin our series of analyses by fitting a single-level model that treats a
transformed form of the response variable as if it were continuous.

We can use MLwiN’s Customised graph window to create a histogram of
a-point:
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From this we see that the distribution of our response variable is certainly
not Normal. In view of this non-normality, we shall make a transformation
to Normal scores. To each response category, this transformation assigns the
value from the inverse of the standard (0,1) Normal cumulative distribution
for the estimated proportion of pupils from the response variable’s original
distribution. See Darlington (1997) for further details and examples.

You can use MLwiN’s NSCO command to create a new response variable
of Normal scores.

� Select Command interface from the Data Manipulation menu

� In the bottom box of the Command interface window, type:

� NSCO 'a-point' c12

� NAME c12 'alevelnormal'

We will treat alevelnormal as a continuous response variable. We first
fit the simplest possible single-level model involving just an intercept term.
To do this, use the Equations window to define the response variable as
alevelnormal (with a Normal error distribution), and set up a single-level
model, using pupil as the level 1 identifier. Add the variable cons as the
explanatory variable. We obtain the following estimates:
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In subsequent models we shall include each pupil’s average GCSE score as
an explanatory variable. We first compute the mean then Normalise it. To
allow for the possibility that the relationship is non-linear, we create new
variables equal to the square and cube of the mean.

� In the Command interface window, enter the following:

� calc c9=c5/c6

� nsco c9 c9

� calc c10=c9^2

� calc c11=c9^3

� name c9 'gcseavnormal' c10 'gcse^2' c11 'gcse^3'

You can of course do the arithmetic calculations in the Calculate window,
but the Normal score transformation can only be done using the NSCO
command.

Now add the newly created GCSE variables and gender as explanatory
variables and fit the model. You will see the following results:
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The coefficients for the quadratic and cubic terms are both significant, but
for simplicity we shall ignore the cubic term in the following analyses. When
we fit just the linear and quadratic GCSE terms, their coefficients change
very little.

Note also that most of the level 1 variance (initially 1.0 as a result of
the Normalisation) has been explained by the model. We also see a
significant gender effect with girls performing worse than boys on average
after adjusting for GCSE.

If we do not adjust for GCSE, we obtain the following:

There is now no significant difference between boys and girls. If we model
the GCSE score to examine gender differences, we obtain:
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We see that the girls have a higher average GCSE score than boys. Returning
to our last model for alevelnormal scores (with no adjustment for GCSE),
we interpret the absence of a gender difference as simply a reflection of the
fact that girls who take Chemistry A levels have a higher prior (GCSE)
achievement but make less progress between GCSE and A level.

11.3 A single-level model with an ordered cat-

egorical response variable

We now look at a richer model that retains the response variable’s original
grade categories. Using notation similar to that of Chapter 10, we specify
that our original response variable has t categories, indexed by s (s = 1, . . . , t)
and that category t is chosen as the reference category. Suppose that the
probability of pupil i having a response variable value of s is π

(s)
i .

To exploit the ordering we base our models upon the cumulative response
probabilities rather than the response probabilities for each separate category.
We define the cumulative response probabilities as

E(y
(s)
i ) = γ

(s)
i =

s∑
h=1

π
(h)
i , s = 1, . . . , t− 1 (11.1)

Here, y
(s)
i are the observed cumulative proportions (out of a total ni observations-

one in our example) for the ith pupil. Expressing the category probabilities
in terms of the cumulative probabilities we have:

π
(h)
i = γ

(h)
i − γ

(h−1)
i , 1 < h < t

π
(1)
i = γ

(1)
i ; γ

(t)
i = 1 (11.2)
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A common model choice is the proportional odds model with a logit link,
namely:

γ
(s)
i = {1 + exp−[α(s) + (Xβ)i]}−1

or

logit(γ
(s)
i ) = α(s) + (Xβ)i (11.3)

This implies that increasing values of the linear component are associated
with increasing probabilities as s increases.

If we assume an underlying multinomial distribution for the category prob-
abilities, the cumulative proportions have a covariance matrix given by

cov(y
(s)
i , y

(r)
i ) = γ

(s)
i (1− γ(r)i )/ni, s ≤ r (11.4)

We can fit models to these cumulative proportions (or counts conditional on
a fixed total) in the same way as with a regular multinomial response vector,
substituting this covariance matrix. (For a discussion of fitting the standard
unordered multinomial, see Chapter 10.)

We now look at models that directly fit the ordered grade categories using
the model described above. Start by looking at the a-point variable.

� Click on a-point in the Names window

� Click on the Categories button

We see that a-point has already been defined as a categorical variable

� Click OK

Now set up the model.
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� From the Model menu, select Equations

� Click Clear

� In the Equations window, click on the Name button

� Click on y, and make the following selections in the Y variable
window:
y: a-point
N levels: 1-i
level 1(i): pupil

� Click done

� Click on the N in the Equations window, scroll down and select
Multinomial

� Under Multinomial options, select Ordered proportional odds

� Use the default logit link function

� Next to ref category select A from the drop-down list

� Click Done

� Click Estimates

The Equations window now shows the following:

The model is expressed in a form that is similar — though not identical —
to the one presented in equations (11.1) to (11.4).

Note that y has been replaced by resp, and that two subscripts are
used on this and the π and γ terms. MLwiN has created a two-level
formulation of our single-level model in a way that parallels what it did
with the unordered category model in Section 10.3. Each pupil, now a
level 2 unit, has five response variables (level 1 units)
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The five equations for these response variables are incomplete because we
have not yet selected the explanatory variables to include in the model. Re-
ferring back to definitions of our categories, we would interpret logit(γ5j) as
the logit of the expected probability that pupil j had a chemistry grade of B
or lower.

If we look at the Names window, we will see that several new variables have
appeared in vacant columns, e.g., resp indicator and pupil long. The
suffix long is created by MLwiN to distinguish each new variable created
automatically in an expanded data set. Each of these new columns has a
length of 10830 (= 5× 2166) because there are 5 responses per pupil.

If we click on resp in the Equations window we obtain:

The double subscripting and new identification code variables further illus-
trate that the model has become a 2-level model with the response category
as level 1.

Now we need to define the denominator vector. For each pupil only one grade
is possible, so the value of nj is always 1. Thus, we need to tell MLwiN to
use a column of 1s as the denominator vector. We already have cons, so we
can use that.

� Click on the term nj in red and choose cons

We can now start adding explanatory variables.

� Click on the Add term button and select cons

We obtain the following window:
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We need to decide whether to fit a separate intercept for each of the five
response variables or to use a common intercept coefficient. We begin by
choosing the former option.

� Click on the add Separate coefficients button

The Equations window now shows:

The naming of the explanatory variables indicates that we are fitting an
ordered proportional odds model as given in equations (11.1) to (11.4). We
will now run this model, which simply fits a separate intercept for each grade.

� In the Equations window, click the Nonlinear button

� In the Nonlinear Estimation window, click on Use Defaults

� Click Done

� Click Start

We obtain the following:
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If we take the antilogit of the first coefficient (−1.398), we obtain 0.198, the
estimated probability that a pupil’s chemistry grade is F. The estimates from
this simple model agree with proportions we can calculate directly from the
data using the Tabulate window. The proportion of pupils with a grade of
F is 19.8%. The probability that a pupil has a grade of F or E is given by
the antilogit of −0.701, i.e, 0.332, and the proportion of pupils with either of
these grades is 33.1% (as we noted earlier). We shall look at interpretations
in more detail later, but note for now that this model is providing more
detailed information than was provided by the continuous response model.
The latter just averaged grade scores.

11.4 A two-level model

The two-level ordered category response model is a generalisation of the
single-level model, as shown in the following set of corresponding model equa-
tions:

E(y
(s)
ij ) = γ

(s)
ij =

s∑
h=1

π
(h)
ij , s = 1, ..., t− 1

cov(y
(s)
ij , y

(r)
ij ) = γ

(s)
ij (1− γ(r)ij )/nij, s ≤ r

γ
(s)
ij = {1 + exp−[α(s) + (Xβ)ij + Zijuj]}−1 (11.5)

or
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logit(γ
(s)
ij ) = α(s) + (Xβ)ij + Zijuj

π
(h)
ij = γ

(h)
ij − γ

(h−1)
ij , 1 < h < t

π
(1)
ij = γ

(1)
ij ; γij

(t) = 1

As we would expect, when fitting this model, MLwiN creates a three-level
formulation. We now add educational institution as a third (highest) level
in the model we have just fitted.

� In the Equations window, click on resp

� Beside N levels: in the Y variable window, select 3-ijk

� Beside level 3(k):, select estab

� Click done

Note in passing that MLwiN has created a new column, estab long
to serve as the actual identifier variable used during fitting. Using the
Names window, you can examine this; the five intercept variables de-
rived from cons; and the full denom variable.

We now need to define the variation at institution level. One possibility is
to allow each category’s intercept term to vary, giving us a 5 x 5 covariance
matrix at level 3. To do this we would simply click on each cons.(<=*)
term in turn and in the X variable widow, check the k(estab long) box.
If we did this, however, we would essentially be fitting a simple multinomial
two-level model, which also has a 5 x 5 covariance matrix (see Chapter 10).
Instead we will fit a single variance term at the institution level.

� Click on the Add Term button on the Equations window toolbar

� In the variable box of the Specify term window, select cons

� Click the add Common coefficient button

The following window appears:
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The terms entered in the model that correspond to the boxes you check in
the Specify common pattern window will all have equal coefficients. So,
to fit our common level 3 variance:

� Click Include all

� Click Done

The Equations window now shows:

A term hjk has been added to the equation for each response category. This
represents terms common to the set of equations, and it is defined immedi-
ately following the equations for the response categories. In our example,
it consists of the single common coefficient associated with a newly created
variable named cons.12345. If we had specified a pattern that included
only response categories 1 and 3, the new variable would have been named
cons.13, and its term would have appeared only in the equations for these
two response categories. As you can see this procedure allows complete flex-
ibility in specifying patterns of shared coefficients across response categories.

At the moment the model is over-parameterised with a unique coefficient for
every response category as well as a common coefficient. We want to use the
coefficient of the common variable, cons.12345, only to specify a common
between-institution variability; we do not need this variable in the fixed part
of the model. To specify how the variable is used:

� Click on the cons.12345 terms

� In the X variable window, uncheck the Fixed Parameter check
box

� Check the k(estab long) check box

� Click Done
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Check that the default estimation procedure has been selected (first order
MQL), and run the first estimation. You should obtain the following results:

Let us review what we have done so far. The second and third lines specify
the cumulative category model. This is followed by five response variable
equations, one for each cumulative category. The first explanatory variable
in each case is a constant, allowing the intercept to be different for each,
as indeed they appear to be. The other explanatory variable, cons.12345
is also a constant (= 1) whose sole contribution to the model — via its
random coefficient — is to add the same random error term to each of the
five categories’ equations. A common institution — level variance is thus
estimated for each category.

Now switch to the preferable method of estimation for this model — second
order PQL:

� Click on the Nonlinear button

� In the Nonlinear Estimation window, select 2nd Order and PQL

� Click Done

� Click Start

Note that when switching estimation methods and also sometimes when
adding new variables you may not be able to proceed by clicking More.
Click Start instead.

The following window shows a large difference between these PQL estimates
and the earlier ones; this suggests that the first order MQL procedure under-
estimates the parameters. We could also get good estimates using MCMC
(see Browne (2003)).
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Let us now add the GSCE normalised score as an explanatory variable, using
a common coefficient across response categories:

� Click on Add Term

� In the variable box of the Specify term window, select gcseavnor-
mal

� Click on add Common coefficient

� In the Specify common pattern window, click on Include all and
then Done

We could have chosen to use add Separate coefficients to allow separate
coefficients for each category, but this would be formally equivalent to fitting
an ordinary multinomial model (see Chapter 10). The important point here
is that we are taking advantage of the ordering in the categories to simplify
the model structure.

The results of this fit (using PQL2) are shown in the following figure.

Note how the institution-level variance is reduced considerably when we
adjust for the GCSE score.

Note also that since we have treated the highest grade as the reference
category, the coefficient of GCSE is negative. That is, as the GCSE score
increases, the probability of being in the other (lower) grade categories
decreases. Thus, for example, the fixed part of the last line of the fitted
model specifies:

logit(prob of having grade B or below) = 2.93− 2.04×GCSE score
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so that as the GCSE score increases, the probability of obtaining a chem-
istry grade of B or lower decreases, or equivalently the probability of a
grade of A increases.

Let’s see the effect of allowing each response category equation to have
its own coefficient for GCSE. To do this, delete the common GCSE term
(gcseavnormal.12345) and add gcseavnormal again, this time using the
add Separate coefficients button. Fit the model again using PQL2, and
ignore any ‘numerical warnings’ that appear. We get the following:

The relatively small differences among the five coefficients for the GCSE
variables, particularly among the first four, suggest that the simpler model
with a common coefficient is reasonable. We now return to that model and
add a quadratic GCSE term and a gender term.
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� Click on each of the five separate gcseavnormal.(<=*) terms in
turn and delete it

� Add gcseavnormal (using the Add Term button), and choose add
Common coefficient

� Add gcseˆ2 and gender using the same process

When we fit this model we obtain the following estimates:

We can compare the results of fitting this model with our findings from sec-
tion 11.2. We see that we would make similar inferences about the common
effect of gender and GCSE score, but now we have a more detailed description
of the probabilities of obtaining each grade.

We will now let the coefficient for the normalised GCSE score be random.
We obtain:
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To interpret this model, we first consider the fixed part. For boys (gender =
0) with average GCSE values (gcseavnormal = gcse2 = 0), we can derive
the predicted values of the cumulative category proportions using (11.5). To
do this, find the antilogits of the above intercept coefficient estimates by
entering the following commands:

� In the Command interface window, enter the commands:

� join -2.542 -1.337 -0.246 1.038 2.92 c50

� calc c51 = alog(c50)

� print c50 c51

The output window will show the following:

Column c51 now contains the cumulative probabilities for boys with average
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GCSE scores: 0.073 for grade F or less, 0.208 for grade E or less and so on.
We then difference the probabilities as in (11.5) to obtain the predicted cate-
gory probabilities (from F to A): (0.072966 0.13504 0.23080 0.29966 0.21036
0.051174).

We might want to see how these figures change for other patterns of explana-
tory variables, in the case, for example, of boys with an average GCSE score
of +1 standard deviation. To do this, enter the following commands:

� Enter the commands:

� calc c52 = alog(c50 - 2.249 - 0.223)

� print c51 c52

We get:

We can see that, for boys, an increase of 1 SD from the mean, on the GCSE
score, has dramatic effects on the cumulative probabilities.

We can also interpret antilogits of the coefficients in the cumulative logit
model in terms of odds ratios as in ordinary logit models. Thus for boys at the
average GCSE score, the odds of being in grades F or E are 0.21/(1−0.21) =
0.27.

Finally, we allow the coefficient of gender to vary at the school level and
obtain the following result:
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This suggests that while girls, overall, make less progress in Chemistry be-
tween GCSE and A level, this does vary across schools. The estimated
between-school standard deviation of this effect is

√
0.296 = 0.54, which

is only slightly less than the average effect of gender. This suggests that in
some schools the girls actually make more progress.

Chapter learning outcomes

? How to formulate a cumulative proportional odds model

? How to set up and fit such a model in MLwiN

? How to interpret the results of such a model
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Modelling Count Data

12.1 Introduction

In health and social research it is quite common for the response variable of
interest to consist of counts of individuals in a particular state or events of a
particular type. For example, we may be interested in the number of children
in each of a set of health regions who are hospitalised in a particular year for
asthma. For small geographic areas with tiny populations, we could use the
binomial distribution in modelling our counts. Usually, however, for large
areas with hundreds or thousands of individuals at risk, we would choose
the Poisson distribution in our modelling, especially when the number of
occurrences of interest in each region is relatively small.

The example data set: malignant melanoma mortality in the Eu-
ropean Community

The example we will use in this chapter to illustrate the fitting of multilevel
Poisson models for count data comes from the field of environmental health.
The problem involves assessing the effect of UV radiation exposure on the
mortality rate due to malignant melanoma in the European Community.
Further information about the study is reported in Langford et al. (1998)

Open the data set mmmec.ws. The Names window shows:

181
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The variables are defined as follows:

Variable Description
nation Country identifier – a categorical variable with labelled cat-

egories
region Region (within country) identifier
county County (within region) identifier
obs Number of male deaths due to malignant melanoma be-

tween 1971 and 1980
exp Expected number of deaths – proportional to the county

population
cons Constant (= 1)
uvbi County-level measurement of UV B radiation (centred on

the mean)

12.2 Fitting a simple Poisson model

Count data are constrained to be non-negative. If we were to try fitting
a Normal model to the data, we could produce predicted counts that were
negative, so we would prefer to model the logarithms of the counts. We will
therefore fit a Poisson model to the count data using a log link function.

We are actually more interested in the rates of malignant melanoma mortal-
ity rather than the actual counts, as each geographic unit will have a different
population size. If we were to use the raw counts of deaths, the units with
larger population size would have larger counts thus masking the true rela-
tionships with explanatory variables. To work with the rates rather than the
counts, we use an additional parameter known as an offset.

This offset is set to be equal to the log (base e) of the expected death count
(which is based on county population). If yi is the observed count in county
i, πi is the mean of the Poisson distribution for the county and Ei is the ex-
pected count or offset, we can express a single-level Poisson model as follows:

yi ∼ Poisson(πi)

log(πi) = log(Ei) +Xβ

log(π/Ei) = Xβ (alternative formulation) (12.1)
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To specify this model in MLwiN:

� Open the Equations window and click on y

� In the Y variable window, choose obs from the y: drop down list

� Select N levels: as 1 - i

� Select county from the level 1(i) drop-down list and click Done

� Click on the N that appears on the first line on the Equations
window

� Set distribution type to Poisson and click Done

� Use the Add term button to add cons and uvbi to the model

� Click on πi in the second equation in the Equations window

� In the specify offset window, select exp from the drop down list
and click Done

� Click on the Estimates button in the Equations window

The Equations window will now look like this:

Note that the final line in the window reflects the fact that the variance
of a Poisson variable with mean π is also π. We have included exp as an
offset, but from equation (12.1) we see we need to use log(exp) instead.

� In the Command interface window, type the command

� calc 'exp' = loge('exp')

Set the estimation procedure:

� Click on the Nonlinear button in the Equations window

� In the Nonlinear Estimation window, select Poisson, 1st order
and MQL
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� Click Done

� Click Start

You should obtain the following results:

We can see here that in this model there is a negative relationship between
incidence of melanoma and UV exposure. This seems surprising but may be
explained by including more structure into the data.

12.3 A three-level analysis

We now consider a three-level Poisson model that will allow us to exam-
ine geographic variation in melanoma mortality. Begin by setting up the
hierarchical structure in MLwiN:

� In the Equations window, click on obs

� In the Y variable window, set N levels: to be 3 - ijk

� Set level 2 as region and level 3 as nation, and click done

The first model we wish to consider is a simple variance components model
to examine the nation and region effects on mortality without adjusting for
UV exposure. To do this:

� Remove uvbi from the model

� Set cons to be random at both the nation and region levels

We will assume in this model that random error terms at the two levels are
Normally distributed.

Given we have only nine countries it is advisable to use RIGLS estimation,
which provides less biased estimates of the variance than IGLS when the
number of highest-level units is small.
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� Select RIGLS from the Estimation menu and run the model

The results are as follows:

This model shows that there is almost five times as much variability between
nations as there is between regions within nations. The 1st order MQL
method is not as accurate as the 2nd order PQL method, so we will now fit
the same model with the latter method (accessed via the Nonlinear button).
The results are as follows:

The results for 2nd order PQL are similar to the MQL results but with a
different split of the variance between the two levels. One important differ-
ence with Poisson models that has also been shown by some simulations is
that the MQL method tends to overestimate some of the variance parame-
ters. This is in contrast with other types of discrete response model where
this method tends to underestimate the variance. For the remainder of the
models in this chapter we will only use the 2nd order PQL method.

The next step in our model fitting with this data set is to add the predictor
uvbi into the multilevel model. The results are as follows:
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This model again shows that the variability between nations is three times the
variability between the regions within nations. The amount of UV radiation
still has a significant negative effect on melanoma mortality.

12.4 A two-level model using separate coun-

try terms

In our three-level model we have very few level 3 units, so the accuracy of
the level 3 variance estimate is low. An alternative approach that we can use
in such a situation would involve fitting a two-level model with a separate
(fixed) intercept for each level 3 unit. We do this here by including country
indicators in (just) the fixed part of the model.

Let’s now set up a model with a separate term for each country. We will
also allow separate uvbi slopes for each country to see if this sheds any
light on the counterintuitive finding that increased uvbi exposure decreases
melanoma counts.

� Click on obsijk and in the Y variable window, set N levels: to 2-ij
and click done

� Remove uvbi from the model

� Click on cons and in the X variable window, uncheck the Fixed
Parameter check box

� Click Done

� Click on Add Term

� In the Specify term window, set variable to nation, set reference
category to [None ] and click Done

� Click on Add Term again
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� In the Specify term window, set order to 1

� Set the first variable to nation and set the second variable to uvbi

� Set the reference category for nation to [None] and click Done

Running this model produces:

We can now form predicted lines for each of the nine countries.

� Select the Predictions window from the Model menu

� Click on fixed in the lower panel and select Include all fixed co-
efficients from the resulting list

� Beside output from prediction to, select c50

The Predictions window should now be as follows (we have not shown all
of it):
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Complete the estimation of the predicted values:

� Click on Calc to store the predicted values in c50

We would now like to plot out nine lines, one for each country. To do this
we need to open the Customised graph window from the Graphs menu.

� In the Customised graph window set y to be c50 and x to be
uvbi

� Select group as nation

� Select plot type as line

� On the plot style tab select colour as 16 rotate and line thick-
ness as 4

� Click the other tab, and beneath the construct key labels from
area, check group code to construct a key

� Click Apply.

Selecting all these options should produce the following graph:
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On your computer screen you will be able to identify the lines according to
the colour coding. Remember that the predicted values are the logarithm to
the base e of the relative risk. Here effects of the UV radiation appear to vary
dramatically from nation to nation. From the estimates in the Equations
window we saw that all countries except country 5 (UK) and country 6 (Italy)
have estimated effects that are not significantly different from zero. This
graph shows a clearer picture of the actual effects of uvbi in each country
as we can clearly see that there is very little overlap in terms of uvbi values
between some countries.

Luxembourg (country 8) is poorly estimated because it contains only three
counties. We can see that even though the intercept term for Luxembourg
is huge, in fact there are no people in Luxembourg who experience the mean
UV exposure (that the intercept represents). For the values of UV exposure
experienced in Luxembourg, the relative risk is close to zero.

The UK has a strong positive association between UV radiation and melanoma
mortality, and this could be explained in many ways. One reason could be
the combination of few hot sunny days at home combined with more recre-
ational travel to warmer climates. Italy on the other hand, has a negative
association between UV radiation and melanoma mortality. This could pos-
sibly be explained by a higher prevalence of low risk dark skinned people in
the south of Italy, which has a higher UV exposure.

This model ends our examination of the melanoma mortality data set. To
finish the chapter we will consider some general issues involving discrete
response models.
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12.5 Some issues and problems for discrete

response models

The binomial response models of the previous chapter and the count data
response models of the present chapter are both examples of multilevel Gen-
eralised linear models (McCullagh & Nelder, 1989).

In addition to fitting a Poisson error model for count data we can also fit
a negative binomial error that allows greater flexibility, essentially allowing
a more complex variance structure than that associated with the Poisson
distribution. The negative binomial appears as an extra option on the drop
down menu list for error distribution. See Goldstein (2003), Chapter 7.

There are several problems in fitting such generalised linear models, and some
of these have been touched upon in this chapter. Research is being actively
carried out in this area and the development of future software has been
planned to reflect this. It will be shown how to fit Generalised linear models
using MCMC methods and bootstrapping in later chapters. In general it is
recommended that more than one approach be tried, and if similar results
are obtained from the various estimation methods then the analyst can have
some confidence in the estimates.

Some care is also needed with using any of the standard diagnostic procedures
based on estimated residuals in binary response models. Where there are few
level 1 units per level 2 unit and / or the underlying probabilities are close
to 0 or 1, then these estimates are not approximately Normally distributed,
even when the model is correct.

Chapter learning outcomes

? How to fit Poisson models to count data

? How to use an offset in MLwiN to model rates rather than raw counts

? How to fit single level models in MLwiN

? How to define categorical variables in MLwiN

? How to use dummy variables to reduce the number of levels in a
model when there are few higher-level units



Chapter 13

Fitting Models to Repeated
Measures Data

13.1 Introduction

Repeated measures data arise in a number of contexts, such as child or animal
growth, panel surveys and the like. The basic structure is that of measure-
ments nested within subjects, i.e. a two-level hierarchy.

Suppose, for example, we have a sample of students whose reading attainment
is measured on a number of occasions. The students define level two, and
the repeated measures or occasions define level one. In longitudinal repeated
measures designs, we usually have a large number of level two units with
rather few level one units in each, in contrast to the cross-sectional study
that provided the data we analysed in Chapter 2.

We can, of course, extend this structure to include a third level representing
groups of students such as classes or schools. It is also worth bearing in
mind that our repeated measures could be obtained from schools or teachers
rather than (or even as well as) from students. So we might have a four-level
structure, with a sample of schools, studied over time by measuring successive
cohorts of students, and these students themselves repeatedly measured as
they pass through the school. A study with such a design would clearly be
large and complex, but it would have the potential for assessing the stability
of school effects as well as for studying students’ educational growth.

In the following sections we introduce a data set from a longitudinal study
of student achievement, and formulate and analyse a sequence of models
of increasing complexity. We shall, however, only cover some of the possible
elaborations of the basic models. Repeated measures models can be extended
to the case of complex serial correlation structures at level 1, and to the
multivariate case. We shall also not deal with the case of repeated discrete
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(for example, binary) responses since this raises some new issues that are
currently being investigated.

Statistical models for repeated measures data

In multilevel structures we do not require balanced data to obtain efficient
estimates. In other words, it is not necessary to have the same number of
lower-level units within each higher-level unit. With repeated measures data
we do not require the same number of measurement occasions per individual
subject (level 2). Often in longitudinal studies individuals leave the study or
miss one or more measurement occasions. Nevertheless, all of the available
data can be incorporated into the analysis. This assumes that the probability
of being missing is independent of any of the random variables in the model.
This condition, known as completely random dropout (CRD) may be relaxed
to that of random dropout (RD) where the missing mechanism depends on
the observed measurements. In this latter case, so long as a full information
estimation procedure is used, such as that of maximum likelihood in MLwiN
for Normal data, then the actual missingness mechanism can be ignored. See
Diggle & Kenward (1994) for a discussion of this issue. The ability to handle
unbalanced data is in contrast to analyses based upon ‘repeated measures
analysis of variance’ (See Plewis (1997), Chapter 4).

We can adopt two perspectives on repeated measures data. The first is con-
cerned with what we may term ‘growth curves’ since such models were orig-
inally developed to fit human and animal anthropometric data (Goldstein,
1979). Some examples are illustrated in Figure 13.1.

A

B

C

D

Time

Figure 13.1: Some examples of growth curves

The curves show different kinds of change in a variable with time or age.
Growth is linear over the age range for case B, non-linear but monotonic for
cases D and A and non-linear and non-monotonic for case C.

A second way of looking at repeated measures data, when there is a small
number of fixed occasions, is to use a ‘conditional’ model where later mea-
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sures are related to one or more earlier measures. This can be a useful
approach in some circumstances, e.g., in a designed experiment in which
each subject is measured before receiving an intervention, immediately after-
ward and on a follow-up occasion. This approach raises no new multilevel
modelling issues. In this chapter we are only concerned with the first type
of modelling, i.e., for repeated measures growth curve data. We now look at
an example data set and analysis.

Repeated measures data on reading attainment

The data we are going to use come from a longitudinal study of a cohort of
students who entered 33 multi-ethnic inner London infant schools in 1982,
and who were followed until the end of their junior schooling in 1989. More
details about the study can be found in Tizard et al. (1988). Students’
reading attainments were tested on up to six occasions; annually from 1982
to 1986 and in 1989. Reading attainment is the response, and there are three
levels of data - school (level 3), student (level 2) and measurement occasion
(level 1). In addition, there are three explanatory variables. The first is
the student’s age, which varies from occasion to occasion and is therefore a
level one variable. The other two are gender (coded 0 for males and 1 for
females) and ethnic group (coded 0 for white and 1 for black). These vary
from student to student and are thus level two variables. The initial sample
at school entry consisted of 171 white indigenous students and 106 black
British students of African Caribbean origin. The sample size increased to
371 one year later and fell to 198 by the end of junior school.

Some basic questions we could investigate are:

1. How does reading attainment change as students get older?

2. Does this vary from student to student?

3. Do different subgroups of students, e.g. boys and girls, have different
patterns of change?

In this chapter we will explore the first two of these questions.

Table 13.1 below gives the number of reading tests per student and shows that
only a minority of students were measured on every occasion. Altogether,
1758 observations were obtained on 407 students, of whom 259 were white and
148 were black. It is important to note that students with, say, a total of three
tests did not necessarily all have tests at the same three occasions. Table
13.2 illustrates some of the response patterns across students. This table
also indicates that students’ ages can differ at fixed measurement occasions.
Compare, for example, student one and student four at occasion one. This
underlines another advantage of multilevel modelling of repeated measures
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which has already been mentioned, namely the ability to handle unequal
measurement intervals.

Table 13.1: Summary of reading test data

# of Tests # of Students % of Total Students Inverse Cumulative %
1 37 9 100
2 41 10 91
3 42 10 81
4 48 12 71
5 113 28 59
6 126 31 31

TOTAL 407 100 n.a.

Table 13.2: Different patterns of test sequences and ages at testing

STUDENT
OCCASION

1 2 3 4 5 6
ONE 4.6 5.7 6.7 7.7 8.7 11.6
TWO 4.8 5.7 6.8 - - -
THREE 4.8 5.8 - 7.8 - -
FOUR 4.9 - - - - -

13.2 A basic model

Defining the scale for the response variable

One problem we have with the present data is how to define and construct
the response for students at different ages. Reading attainment cannot usu-
ally be measured with the same test at each age, and in our example four
rather different, age-appropriate tests were used. The underlying construct
is reading but the observed variable changes with age, and we wish to con-
struct a common age scale with sensible properties. Moreover, we may find
that our results vary as we change the scale of our response. Here we work
with a scale for the response defined in the following ‘age-equivalent’ way.
The mean reading score at each occasion is set equal to the mean student
age for that occasion, and the variance is set to increase from one occasion
to the next in such a way that the coefficient of variation (i.e. the standard
deviation divided by the mean) is constant and equal to 0.13. Allowing the
variance, as well as the mean, to increase with age is consistent with what
we know about many kinds of growth. An alternative measure would be z
scores (zero mean and unit variance) at each occasion.
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Setting up the data structure

Open the supplied worksheet, reading1.ws, which contains 13 variables for
407 students as shown below in the Names display:

Field or Column number 1 is the student identifier. This is followed by six
pairs of fields corresponding to the six occasions, each pair being the student’s
reading score and age on that occasion.

Note that the ages have been centred on the mean age. In this data
set, −10 represents a missing value. We can tell MLwiN that −10 is the
missing value code by:

� Select the Options menu

� Select Numbers(Display precision and missing value code)

� Set the missing value code to −10

� Click the Apply button, then Done

The Names window is updated and now explicitly shows the number of
missing cases in each variable:
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This arrangement of data, in which each row of a rectangular array corre-
sponds to a different individual and contains all the data for that individual,
is a natural one, but it does not reflect the hierarchical structure of measure-
ments nested within individuals. The Split records window (shown below),
accessed via the Data Manipulation menu, is designed to transform an in-
dividual’s data record into separate records (or rows), one for each occasion.
In the present case we shall produce six records per student, that is, 2442
records altogether. The ordering of students will be preserved, and they will
become the level 2 units.

There are two types of data to consider: occasion specific data and repeated
data. The former (in principle) change from occasion to occasion, in this case,
the reading scores and the ages. The latter remain constant from occasion
to occasion, in this case, the student identifiers.

First let us deal with the occasion specific data:

� Open the Split records window

� Set the Number of occasions to 6

� Set the Number of variables to 2

Doing this produces:
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We need to stack the six reading scores into a single column and the six ages
into a single column.

� In the Stack data grid, click on Variable 1

� From the drop-down list that appears, select the six variables read1,
read2, . . . , read6 and then click Done. (To make multiple selec-
tions, hold the control key down while clicking on variable names.)

� Repeat the above two steps for Variable 2 and the six variables
age1 to age6

Clicking on the column headings allows you to set all six occasion variables
from a single pick list. The first variable on the list is assigned to occasion 1,
the second to occasion 2 and so on. This works fine in our case because the
variables appear on the list in the correct order. If this is not the case, you
can specifically assign variables to occasions by clicking on individual cells in
the grid.

� Click in turn on the two empty cells in the Stacked into row of the
Stack data grid

� From the drop-down lists that appear, select c14 and c15 respec-
tively.

� Tick the Generate indicator column check box

� In the neighbouring drop-down list, select c16

That deals with occasion specific data. Now we will specify the repeated
data:



198 CHAPTER 13.

� In the Repeat(carried data) frame, select ID as the input column
and c17 as the output

The completed set of entries should look like this:

This will take the six reading score variables, each of length 407, and stack
them into a single variable in c14. The six age variables will be stacked into
c15. Each id code will be repeated six times, and the repeated codes are
stored in c17. The indicator column, which is output to c16, will contain
occasion identifiers for the new long data set.

� Click the Split button to execute the changes

� You will be asked if you want to save the worksheet — select NO

The Names window now shows the following for c14 through c17:

Assign the names reading, age, occasion and student to c14-c17. View-
ing columns 14-17 will now show:
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The data are now in the required form with one row per occasion. It would
now be a good idea to save the worksheet, using a different name.

Initial data exploration

Before we start to do any modelling, we can do some exploratory work. The
mean reading score at each occasion is obtained using the Tabulate window
accessed via the Basic statistics menu:

� Select Means as the Output Mode

� A drop-down list labelled variate column appears. Select reading.

� From the Columns drop-down list, select occasion

� Click Tabulate

This produces the output :
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As we have noted earlier, our measure of reading is constructed from a series
of different reading tests. The present scaling choice is reflected in the models
which follow, where the increasing variance with age is modelled by fitting
random coefficients.

Now use the Tabulate window to tabulate mean age by occasion.

The age variable has been transformed by measuring it as a deviation from
the overall mean age. The mean reading score at each occasion is, from the
way we have defined our reading scale, equal to the mean true age at that
occasion, not the mean on the transformed age scale.

We are now almost in a position to set up a simple model, but first we must
define a constant column.

� Access the Generate Vector window via the Data Manipulation
menu

� Fill out the options as shown below and click Generate

� Use the Names window to assign the name cons to c18

A baseline variance components model

We start by seeing how the total variance is partitioned into two components:
between students and between occasions within students. This variance com-
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ponents model is not interesting in itself but it provides a baseline with which
to compare more complex models. We define the model and display it in the
Equations window as follows:

At convergence the estimates are:

As we would expect, given the way we have defined our response, the varia-
tion between occasions within students is large and overwhelms the variation
between students. The likelihood statistic (−2 loglikelihood), found at the
bottom of the Equations window, can be used as the basis for judging more
elaborate models. The baseline value is 7685.7.

13.3 A linear growth curve model

A first step in modelling the between-occasion within-student, or level 1,
variation would be to fit a fixed linear trend. We therefore add age to our
list of fixed explanatory variables in the Equations window, click on More
and at convergence obtain the following:
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The estimate of the fixed parameter for age is very close to 1 because of the
way the scale is defined. We see marked changes from our previous model in
the estimates of the random parameters. We get an estimate of the level 2
variance that is about twice the size of the remaining level 1 variance, and a
large reduction in the likelihood statistic, which is now 3795.6.

We would expect the linear growth rate to vary from student to student
around its mean value of 1, rather than be fixed, and so we make the coeffi-
cient of age random at level 2 and continue iterations until convergence to
give:

Note that the coefficient for age now has a subscript j.

The deviance, that is the reduction in the likelihood statistic, is 586; this is
large and is clearly statistically highly significant. Hence there is considerable
variation between students in their linear growth rates. We can get some idea
of the size of this variation by taking the square root of the slope variance
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(σ2
u1) to give the estimated standard deviation (0.19). Assuming Normality,

about 95% of the students will have growth rates within two standard devi-
ations of the overall mean (= 1), giving a 95% coverage interval of 0.62 to
1.38 for the ‘growth rate’.

We can also look at various plots of the level 2 residuals, using the Residuals
window. Below we plot the level 2 standardised residuals

Level 2 standardised residual plot: slope vs. intercept

We see from the above plot that the two level 2 residuals are positively
correlated. Using the Estimates window we see that the model estimate is
0.77 and shows that the greater the expected score at mean age, the faster the
growth. However, this statistic needs to be interpreted with great caution:
it can vary according to the scale adopted, and is relevant only for linear
growth models.

To study the distributional assumptions, we can plot the level 1 and level 2
residuals against their Normal scores: in the present case these plots conform
closely to straight lines. The level 1 plot of the standardised residual against
Normal score is as follows:

Level 1 standardised residual



204 CHAPTER 13.

13.4 Complex level 1 variation

Before going on to elaborate the level 2 variation, we can model complex,
that is non-constant, variation at level 1 to reflect the ‘constant coefficient of
variation’ scaling of the reading score. This requires that the total variance at
each age is proportional to the square of the mean, so that we would expect
both the level 2 and level 1 variances to be non-constant. To allow the level
1 variance to be a quadratic function of the predicted value, we declare the
coefficient of age to be random at level 1 (see for example Goldstein (2003),
Chapter 3). The Equations window is:

From the Variance function window we see that the level 1 variance is the
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following function of the level 1 parameters, whose estimates are obtained by
running the model to convergence:

(e0ijcons + e1ijageij) = σ2
e0cons2 + 2σe01cons× ageij + σ2

e1age2ij

As a result of allowing the level 1 variance to have this form, there is a sta-
tistically significant decrease in the likelihood statistic of 32.4 with 2 degrees
of freedom. We shall see later that some of this level 1 variation can be
explained by further modelling of the level 2 variation.

13.5 Repeated measures modelling of non-

linear polynomial growth

Growth in reading may not be linear for all students over this age range. One
simple way of inducing nonlinearity is to define a quadratic term in age.

� Type the following in the bottom box of the Command interface
window and press return:

� calc c19 = 'age'^2

� Use the Names window to assign the name agesq to c19

Add agesq to the model in the fixed part with a coefficient random at the
student level. At convergence we have:
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The likelihood statistic shows a further drop, this time by 45 with 4 degrees
of freedom (one fixed parameter and three random parameters), so there is
strong evidence that a quadratic term, which varies from student to student,
improves the model.

Note that the fixed parameter for agesq is very small because of the way
the scale was defined over age. The level 1 random parameter estimates
are different from those of the previous model. The σ2

e1 parameter is
extremely small and nonsignificant, and we estimate a linear effect with
age for the between-occasion variance. The display precision in the above
window is 3 significant digits after the decimal point. If this is increased
to 4 (use the Display precision item on the Options menu) we see that
the estimate is actually 0.0004

What has happened is that the more complex level 2 variation which we have
introduced in order to model nonlinear growth in individuals has absorbed
much of the residual level 1 variation in the earlier model. We can view this
final model for the random variation as a convenient and reasonably parsi-
monious description of how the overall variance produced by the assumption
of a constant coefficient of variation is partitioned between the levels. We
can use the Variance function window to calculate the variance at both
level 1 and level 2 for each record in the data set. If we place these into
separate columns (say, c28 and c29) and then add the two columns together
into, say, c30 using the Calculate window, we obtain the total predicted
variance. The plot below shows this as a function of age, confirming the
original definition of the variance as a quadratic function of the mean, which
itself is defined to be a linear function of age.
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Total variance as a function of age

Since the overall relationship of the mean and variance with age is to some
extent arbitrary and our choice, our principal interest lies in how the growth
of individuals varies. The model parameters and derived variance functions
describe these growth patterns, and we can also display the estimated growth
lines for selected individuals or groups. For example, to plot the lines for the
first four individuals, let us set up a filter column, say c31, which is 1 if
the record belongs to one of these individuals and zero otherwise. This is
achieved by typing in the Calculate window:

� c31 = 'student' < 5

See the Help system for a detailed description of how to use this window.

Now open the Predictions window and compute predicted values using the
fixed part coefficients plus the level 2 random coefficients, placing the result
into column 32, as follows:

� Open the Customised graph window and make the following se-
lections on the plot what? tab: c32 for y, age for x, c31 as the
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filter, student as the group variable and line as the plot type

� In the colour selector on the plot style tab, choose 16 rotate

� Click Apply

The following plot will appear, with each student represented by a line.

We can easily display other student lines by redefining c31 with the following
calculation:

� c31 = 'student' >= 10 & 'student' < 15

This immediately updates the graph to display the predicted lines for stu-
dents 11 through 15 as follows, where one student only has two measurements:
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We can set up quite general filter functions using the Calculate window,
allowing us to explore the data extensively.

Various extensions are available. We can fit multivariate repeated measures
models using the Multivariate model definition window as described in a
later chapter, or extend the level 1 component to have a serial correlation
structure (see Goldstein et al. (1994); for details of how to do this in MLwiN
see Section 5 of the MLwiN Version 2.10 Manual Supplement).

Chapter learning outcomes

? How to formulate repeated measures models

? How to fit growth curve models of increasing complexity
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Chapter 14

Multivariate Response Models

14.1 Introduction

Multivariate response data are conveniently incorporated into a multilevel
model by creating an extra level “below” the original level 1 units to define
the multivariate structure. We thus have responses within individuals that
are in turn nested within higher-level units.

This chapter will show how to specify and fit a relatively straightforward
multivariate model with Normal responses. We shall briefly deal with the
case of multivariate response models for categorical response variables.

The example data set

We shall be using data consisting of scores on two components of a science
examination taken in 1989 by 1905 students in 73 schools in England. The
examination is the General Certificate of Secondary Education (GCSE) taken
at the end of compulsory schooling, normally when students are 16 years of
age. The first component is a traditional written question paper (marked
out of a total score of 160), and the second consists of coursework (marked
out of a total score of 108), including projects undertaken during the course
and marked by each student’s own teacher (but ‘moderated’, i.e., a sample is
checked by external examiners). Both components’ scores have been rescaled
so that their maximum is 100.

Interest in these data centres on the relationship between the component
marks at both the school and student level, whether there are gender dif-
ferences in this relationship and whether the variability differs for the two
components.

211
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Open the worksheet gcsemv1.ws supplied with the MLwiN software. The
variables in the worksheet and shown in the Names window are defined as
follows:

Variable Description
school School identification
student Student identification
female 1 if female, 0 if male
age-mths Age in months
written Score on the written component
csework Score on the coursework component
cons Constant (= 1)

The Names window also shows that the two response variables each have
approximately 10% missing, so that about 20% of students have a single
response. For present purposes we assume that missing is completely at
random.

14.2 Specifying a multivariate model

To define a multivariate model—in our case, a bivariate model—we treat the
individual student as a level 2 unit and the ‘within-student’ measurements
as level 1 units. Each level 1 measurement ‘record’ has a response, which is
either the written paper score or the coursework score. The basic explana-
tory variables are a set of dummy variables that indicate which response
variable is present. Further explanatory variables are defined by multiplying
these dummy variables by individual-level explanatory variables, for example
gender.

Omitting school identification, the form of the data matrix is displayed in
Table 14.1 for three students. Two of them have both measurements, and
the third has only the coursework paper score. The first and second students
are female (1), and the third is male (0).

The model for the two-level case (i.e., ignoring school) can be written as
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Table 14.1: Data matrix for examination data

Intercepts Gender
Student Response Written Coursework Written.

gender
Coursework.
gender

1 (female) y11 1 0 1 0
1 y21 0 1 0 1
2 (female) y12 1 0 1 0
2 y22 0 1 0 1
3 (male) y13 0 1 0 0

follows:

yij = β0z1ij + β1z2ij + β2z1ijxj + β3z2ijxj + u1jz1ij + u2jz2ij

z1ij =

{
1 if written

0 if coursework

}
, z2ij = 1− z1ij, xj =

{
1 if female
0 if male

}
var(u1j) = σ2

u1, var(u2j) = σ2
u2, cov(u1ju2j) = σu12

Alternatively we can write:

response1j = b0jwrittenij + b2written.genderij

b0j = b0 + u0j

response2jj = b1jcourseworkij + b3coursework.genderij

b1j = b1 + u1j[
u0j
u1j

]
∼ (N,Ωu), Ωu =

[
σ2
u0

σ2
u01 σ2

u1

]
(14.1)

where response1j is the written score for student j and response2j is the
coursework score for student j.

There are several interesting features of this model. There is no level 1 varia-
tion specified because level 1 exists solely to define the multivariate structure.
The level 2 variances and covariance are the (residual) between-student vari-
ances. In the case where only the intercept dummy variables are fitted, and
in the case where every student has both scores, the model estimates of
these parameters become the usual between-student estimates of the vari-
ances and covariance. The multilevel estimates are statistically efficient even
where some responses are missing, and in the case where the measurements
have a multivariate Normal distribution IGLS provides maximum likelihood
estimates.

Thus, the formulation as a 2-level model allows for the efficient estimation
of a covariance matrix with missing responses, where the missingness is at
random. This means, in particular, that studies can be designed in such a
way that not every individual has every measurement, with measurements
randomly allocated to individuals. Such ‘rotation’ or ‘matrix’ designs are
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common in many areas and may be efficiently modelled in this way. A more
detailed discussion is given by Goldstein (2003) (Chapter 4). Furthermore,
the ability to provide estimates of covariance matrices at each higher level of
a data hierarchy enables us to conduct additional forms of modelling such as
multilevel factor analysis (see Rowe & Hill (1998).

A third level (school) can be incorporated, and this is specified by inserting
a third subscript, k, and two associated random intercept terms.

14.3 Setting up the basic model

Now let’s set up our first model. Begin by opening the Equations window.
We need to tell the software we have more than one response variable.

� Click on the Responses button on the Equations window’s toolbar

� In the Specify responses window that appears, highlight written
and csework and click Done

Two things happen. Firstly, the Equations window is updated

We can see the Equations window starting to take the form of equation
(14.1). Secondly, if we look at the Names window we see two new vari-
ables have been created, resp and resp indicator. The former contains the
stacked responses and the latter is a categorical variable indicating which
response the current data row applies to.

We now need to specify that responses 1 and 2 are nested within students

� Click on either resp1 or resp2

Notice that so far we have a one-level model set up with level 1 defined by
the response indicator column.
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� In the Y variable window, set N levels as 2-ij

� Set level 2(j) as student

� Click Done

If you click on resp1 again you will see that student has been replaced
by a newly created column called student long. Let’s look at the original
response columns and the created data:

� From the Data Manipulation menu, select View or edit data

� Click on the view button in the Data window

� Select student, written, csework, resp indicator, response
and student long

� Click OK

We see the original student identifier and response columns have a length of
1905 with one row per child. The newly created columns are exactly twice
as long, 3810, with one row per response.

Note the way that MLwiN treats the missing responses for students 16
and 25.

Now let’s add explanatory variables into the model. We begin by adding two
intercepts, one for the written response and one for the coursework response:

� Click on the Add Term button in the Equations window

� In the Specify Term window that appears, select cons from the
variable drop-down list

� Click the add Separate coefficients button

The Equations window becomes:
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To complete the model specification we need to specify a 2 × 2 covariance
matrix of the responses at the student level. To do this

� Click on β0

� In the X variable window, check the j(student long) check box
and click Done

� Repeat the procedure for β1

� Click on the Estimates button

The Equations window now looks like this:

The window shows the same model structure as equation (14.1). If we run
the model by clicking Start and then Estimates we see:
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Here we estimate the two means and the covariance matrix for the two re-
sponses. The advantage of fitting this model in a multilevel framework is
that we do not have to delete cases where one of the responses is missing.

Let’s now elaborate the model by partitioning the covariance matrix into
between-student and between-school components. We also include gender
effects in the fixed part of the model.

� Click on resp (1 or 2)

� In the Y variable window, set N levels: as 3-ijk

� Set level 3(k): as school and click done

� Click on β0 and β1 in turn, and in the X variable window, check
the k(school long) check box (clicking Done each time)

� Click on the Add Term button

� Select female from the variable drop-down list

� Click the add Separate coefficients button

� Run the model by clicking Start

The Equations window should now look like this:
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The coefficients for female.written (-2.5) and female.csework (6.8) tell
us the gender difference for the written and coursework components, respec-
tively. Both coefficients are statistically significant. The girls do somewhat
worse than the boys on the written paper but considerably better on the
coursework component. The coursework component also has a larger vari-
ance at both the student and school levels. The correlations between the
coursework and written scores are 0.42 and 0.49 at school and student level
respectively. The intra-school correlation is 0.27 for the written paper and
0.29 for the coursework.

We can often view the results more conveniently using the Estimates win-
dow, which is opened by selecting Estimate tables from the Model menu.
Use the Help button on this window to obtain details on how to manipulate
the display. Below is an example of a display of the level 2 and level 3 ran-
dom parameters matrices, showing a symbol, an estimate and a correlation
for each element.
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14.4 A more elaborate model

We now let the coefficient of gender (female) be random at the school level.

� Click on female.written and female.csework in turn, and in the
X variable window, check the k(school long) check box (clicking
Done each time)

We get the estimates shown below and focus on the school-level covariance
matrix.

Note the numbering of the random error terms to correctly identify the
parameters in this matrix. Here, the first and second terms are for the
written and coursework intercepts, respectively, and the third and fourth
are for the written and coursework gender differences.

The value of the likelihood statistic is 26756.1, so that the deviance statistic
(relative to the previous model) is 44.4 with 7 degrees of freedom; this is
highly significant. The variance of the coursework gender difference is rather
large. A variance of 49.9 implies a 95% coverage range of plus or minus 15
points around the average difference of 7.2. We notice, however, that the
estimate for the variance of the gender difference for the written paper is
close to its standard error, as are the covariances with the gender difference.
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Now fit the model with the random term for female.written omitted.

� Click on female.written

� In the X variable window, uncheck the k(school long) check box
and click Done

The results are shown in the upper figure on the following page.

The likelihood statistic is now 26760.4 so that, compared with the preceding
model, the deviance is only 4.3 with four degrees of freedom. Thus, while
there is variation among schools in the gender difference for the coursework
component, there is no evidence that there is any such gender-related varia-
tion for the written paper. The correlations are shown in the matrix in the
lower figure on the next page.
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The correlation between the school-level, gender difference coursework resid-
ual and the school-level coursework residual for the intercept (i.e., the mean
for boys) is ρ(v3, v1) = −0.531. This indicates that in schools which have
high means for boys on coursework (a positive v1 residual) the gender dif-
ference will tend to be negative (a negative v3 residual). In other words, in
such schools, girls will tend to score worse than boys. Conversely, schools
that have a low mean for boys will tend to have a positive gender difference.
If we look at the pairwise residual plots, we can observe this pattern.

� Select Residuals from the Model menu to open the Residuals
window

� From the level: drop-down list on the Settings tab, select
3:school long

� Click the Calc button
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� Select the Plots tab of the Residuals window

� Select the residuals option in the pairwise frame

� Click the Apply button

The following trellis graph of pairwise plots of the school level residuals ap-
pears.

In the bottom right graph we see the plot showing the negative correlation
between male coursework residuals and gender difference residuals.

14.5 Multivariate models for discrete responses

We will quickly illustrate the use of multivariate multilevel models for dis-
crete responses and the interpretation of between-response covariances at the
lowest level. To do this let’s work with the data set we used in Chapter 2.

� Use Open worksheet on the File menu to open the tutorial work-
sheet file tutorial.ws

Let’s make binary variables from normexam and standlrt.

� On the File menu select New Macro
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� Type the following commands into the macro editor window that
appears (called Untitled:1):

� chan 0 4 c3 1 c11

� chan -4 0 c11 0 c11

� chan 0 4 c5 1 c12

� chan -4 0 c12 0 c12

� name c11 'binexam' c12 'binlrt'

� Click the Execute button on the macro editor window

Note that you could have instead used the Recode Variables window
(accessed from the Data Manipulation menu) to dichotomise the two
variables.

Now let’s set up a model where we estimate the covariance between these
two binary responses.

� Click the Responses button in the Equations window toolbar

� In the Specify responses window, select binexam and binlrt and
click Done

� Click on the distribution specifier N in the first line of the Equations
window.

� In the Response Type window, select Binomial (and logit) and
click Done

� In the same way, set the second response to be Binomial

� Click the Add Term button

� In the Specify term window, select cons and click on add Sepa-
rate coefficients

� Click on n1 in the Equations window

� In the Specify denominator window, select cons and click Done

� In the same way, set the denominator for the second response to be
cons

� Click on resp1 (or resp2) and in the Y variable window set N
levels: to be 2-ij

� Set level 2(j) to be student, and click done

� Click Estimates

The Equations window should look like this:
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The variance of each response is given the appropriate binomial form. We
also estimate the correlation, at the student level, between these two binomial
responses. After running the model, you will find this correlation to be 0.419.
Remember that level 1 was set up only to accommodate the multivariate
structure, so this is a single-level, unconditional model (with no missing
data). We therefore get the same answer if we simply correlate the two
binary responses using the traditional formula for a correlation coefficient.
You can verify this using the Averages and Correlation window, which
can be accessed from the Basic Statistics menu.

The advantage of fitting a multilevel model in this situation is that we can
extend the model to handle missing data, extra covariates and higher-level
random effects.

MLwiN has some ability to handle a mixture of response types. It can handle
a mixture of any number of Normally distributed response variables with any
number of Binomially distributed variables. The software can also handle a
mixture of any number of Poisson variables with any number of Normal ones.
Negative binomial or multinomial response variables cannot be included in
multivariate response models, but can be used in univariate response models.

Chapter learning outcomes

? An understanding of how multivariate models can be accommodated
into a multilevel structure by specifying response measurements at
level 1

? How to use MLwiN to specify multilevel multivariate response models

? How to interpret multilevel multivariate response models



Chapter 15

Diagnostics for Multilevel
Models

15.1 Introduction

Diagnostic procedures, such as the detection of outliers and data points with
a large influence on the fit of a model, are an important part of ordinary least
squares regression analysis. The aim of this chapter is to demonstrate, via
an example analysis, how some of the concepts and diagnostic tools used in
regression modelling can be translated into the multilevel modelling situation.
The statistical techniques used and the example explored in this chapter are
dealt with in detail in Langford & Lewis (1998).

Data exploration techniques, including the detection of outlying observa-
tions, are a little-explored area of multilevel modelling. For ordinary regres-
sion, there is an extensive literature on the detection and treatment of single
outliers, and an increasing literature on multiple outliers (Barnett & Lewis,
1994). However, in data structures of increasing complexity, the concept of
an outlier becomes less clear-cut. For example, in a multilevel model struc-
ture, we may wish to know at what level(s) a particular response is outlying,
and in respect to which explanatory variable(s). We use the term level to
describe the unit of analysis in our model. In a multilevel model, more than
one unit of analysis is appropriate for the data (Goldstein, 2003).

In a simple educational example, we may have data on examination results in
a 2-level structure with students nested within schools, and either students
or schools may be considered as being outliers at their respective levels in
the model. Suppose, for example, that at the school level a particular school
is found to be a discordant outlier; we will need to ascertain whether it is
discordant due to a systematic difference affecting all the students measured
within that school, or because one or two students are responsible for the
discrepancy. At the student level, an individual may be outlying with respect
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to the overall relationships found across all schools, or be unusual only in the
context of his / her particular school. Indeed, these concepts become more
complex when there are more than two levels.

Other concepts become similarly more complex. For example, masking of
outlying observations, where the presence of one observation may conceal
the importance of another (Atkinson, 1986), can apply across the levels of
a model. The outlying nature of a school may be masked because of the
presence of another similarly outlying school, or by the presence of a small
number of students within the school whose influence brings the overall re-
lationships within that school closer to the average for all schools. Other
effects such as swamping (Barnett & Lewis, 1994) and other measures of
joint or conditional influence (Lawrence, 1995) may also occur within as well
as between units at the higher levels of a multilevel model.

An educational example

In the classic paper Aitkin & Longford (1986), the authors report an analysis
of 907 students in 18 schools in a Local Education Authority in the United
Kingdom. They discuss the implications of fitting different models to the
data on parameter estimates and their interpretation. Of particular interest
here is the presence of two single-sex grammar schools in the data, which
are otherwise made up of comprehensive schools. Our analysis focuses on
whether these two schools are discordant outliers in the data set, and thus of
a genuinely different character. More generally, it uses the data as an example
of how an examination of outliers in a two-level model may be pursued, issues
not investigated by Aitkin and Longford. The numbers of students per school
are given in the tables below. Schools 17 and 18 are the grammar schools.

School 1 2 3 4 5 6 7 8 9
# Pupils 65 79 48 47 66 41 52 67 49

School 10 11 12 13 14 15 16 17 18
# Pupils 47 50 41 49 29 72 62 22 21

The outcome variable for the following analysis is the O-level/CSE exami-
nation results, converted into a score by adding up the results for individual
subjects for each student using a simple scoring system. The “intake” score
for each school is defined as being the Verbal Reasoning quotient, VRQ, a
measure of students’ ability made when they enter the school. Both of these
scores were converted into Normal scores for this analysis, as there was evi-
dence of clustering of scores at high values, probably determined by the fact
that there is an upper limit on the scores which an individual student can
achieve. Hence our analysis is not exactly equivalent to that of Aitkin and
Longford. The outcome variable for each pupil is referred to as N-ILEA and
the intake variable, measuring VRQ, as N-VRQ.
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Open the worksheet called diag1.ws containing the data, which you can look
at using the Names and Data windows. Go to the Equations window to
view a model that has already been set up in the worksheet. You will see
the following (possibly after clicking on Names and / or Estimates):

We have a two level model, with students (subscript i) nested within the
18 schools (subscript j). The outcome variable, N-ILEA, is modelled as a
function of the intake variable, N-VRQ, which is also in the random part
of the model at level 2, the school level. This means we have a random
slopes and intercepts model for schools. There is just one variance term at
level 1 measuring the residual variance of the students. Double click on the
Estimates button at the bottom of the Equations window, and run the
model until it converges. The result should look like this:

Most of the variance occurs between students, but there is significant vari-
ance between schools at level 2. We can explore the relationship between
outcome and intake variables for each school by using the predictions win-
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dow. Choose the fixed parameters and random parameters at level 2 to make
predictions for the regression lines for each school, and save them into c15.
The predictions window should look like this when you make the calcula-
tion:

Use the Customised graph window to create two graphs in display D1.
The first is a line graph of the predictions in c15 plotted against N-VRQ,
grouped by SCHOOL; the second is a point plot of the response variable
N-ILEA against N-VRQ, showing the outcome and intake scores for each
student. Highlight the uppermost line on the top graph by clicking just
above it. A Graph options window will open and inform you that you have
identified school 17, one of the grammar schools that will serve as a focus for
this example analysis.

From the In graphs menu, select highlight(style 1) and click Apply. The
Graph display window should look like the following figure, with the school
17 line and the data points for its pupils highlighted in red.
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We can see that school 17 has the highest intercept value and one of the
highest slope values. From the lower plot, we can also see that students
in school 17 tend to be high achievers, with the possible exception of one
student whose score is near the mean.

We can examine the values of slopes and intercepts further by using the
Residuals window. Calculate residuals and other regression diagnostics at
level two by selecting 2:SCHOOL from the level drop-down list on the
Settings tab. Type the value 1.4 into the box beside SD (comparative) of
residual to so that we can compare confidence intervals around the residuals
for each school. The Residuals window should now look like the next figure.
Remember to click Calc to perform the computations.

Goldstein & Healy (1995) discuss the circumstances where the value of 1.4
rather than the conventional 1.96 standard deviations is used to calculate
95% intervals. Roughly speaking, if we wish to use the intervals to make
comparisons between pairs of schools, then we can judge significance at the
5% level by whether or not the (1.4) intervals overlap. If, on the other hand,
we wish, say, to decide whether a school is significantly different from the
overall mean, the conventional (1.96) interval can be examined to see whether
or not it overlaps the zero line. For present purposes we shall assume that
interest focuses on pairwise school comparisons.

Select the Plots tab on the Residuals window, and then select the option
to display residual +/- 1.4 sd x rank. The Residual Plots menu should
look like this:
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Click Apply, and see the following graph displayed.

Note that it is put by default into display D10, but you can change this
option if you like.

This confirms that school 17 (which we highlighted earlier) has the largest
intercept residual, and the second largest slope residual. We can also ex-
amine the relationship between intercept and slope residuals. Return to the
Plots tab of the Residuals window, and choose the residuals option in the
pairwise frame, then click on Apply. We get this graph as output:
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We can see that there is a very strong positive relationship between the val-
ues of the intercept and slope residuals, which we can determine from the
Estimates window is 0.836. This means that the better the average perfor-
mance of students in a school, the more strongly positive is the relationship
between outcome and intake score. School 17 is again shown in the top right
hand corner of the graph.

15.2 Diagnostics plotting: Deletion residu-

als, influence and leverage

We can also examine a number of diagnostic measures at the school level.
At the bottom of the Plots tab of the Residuals window, click on the
diagnostics by variable box, choosing CONS as the variable (this should
be shown by default). Click on Apply, and the resulting graphics window
should look like this:

In the Graph display window, we have six plots of diagnostic measures
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associated with the intercept at the school level, the higher level in the model.
School 17, which we have previously chosen to highlight, is shown in red on
all six diagrams. Full explanations of the different diagnostics are given in
Langford & Lewis (1998), but a brief descriptive explanation of each measure
follows:

1. The plot in the top left hand corner shows a histogram of the raw
residuals at school level. As can be seen, school 17 has the highest
intercept residual.

2. The top right hand plot is a histogram of the standardised diagnostic
residuals at the school level. (See Goldstein (2003) for an explanation
of the difference between diagnostic and comparative variances of the
residuals). Again, school 17 has the highest standardised residual. The
standardised residual (sometimes called the Studentised residual) is the
value of the residual divided by its diagnostic standard error, and any
value greater than +2 or less than −2 indicates a school which may be
significantly different from the mean at the 95% confidence level.

3. The middle left hand plot is a histogram of the leverage values for each
school. The leverage values are calculated using the projection, or hat
matrix of the fitted values of the model. A high leverage value for a
particular school indicates that any change in the intercept for that
school will tend to move the regression surface appreciably towards
that altered value (Venables & Ripley, 1994). An approximate cut-off
point for looking at unusually high leverage values is 2p/n, where p
is the number of random variables at a particular level, and n is the
number of units at that level. Here, we have 2 variables and 18 schools,
so unusually high leverage values may be above 4/18, i.e. 0.22. One
school (6) has a leverage value appreciably above this value, which may
require further investigation. School 17 does not have a particularly
high leverage value of about 0.17.

4. The middle right hand plot shows influence values, which are a multi-
level equivalent of the DFITS measure of influence (Belsey et al. (1980);
Velleman & Welsch (1981)). The influence values combine the residuals
and leverage values to measure the impact of each school on the coeffi-
cient value for, in this case, the intercept (see Langford & Lewis (1998)
for further details). School 17, having a large residual, and a roughly
average leverage value comes out as having the highest influence on the
intercept.

5. The lower left hand plot is a histogram of deletion residuals. The
deletion residuals show the deviation between the intercept for each
particular school and the mean intercept for all schools, when the model
is fitted to the data excluding that school. When the number of units at
a particular level is large, these will be very similar to the standardised
residuals. However, when the number of schools is small — in this case,
there are only 18 schools — there may be some differences. It is the
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deletion residuals that are used in the calculation of influence values
discussed above.

6. The lower right hand diagram shows a plot of leverage values against
standardised residuals. We can see school 17 at the far right of the
graph, and school 6, with a high leverage value is towards the top left
hand corner. Schools with unusual leverage values or residuals can
easily be identified from the plot using the mouse.

We can calculate the same measures for the slopes at the school level associ-
ated with the explanatory variable N-VRQ. If you return to the Residuals
window and this time choose N-VRQ in the diagnostics by variable box
and click Apply, the Graph display window should look like this:

We can see from the standardised residuals plot that two schools have un-
usually high slope values, these being school 17 and school 12. School 12 also
has the highest influence on the slope, followed by school 17, so school 12
would be a good candidate for further investigation, although for the sake of
simplicity, we shall focus our attention on school 17 in this analysis.

Return to the Settings tab of the Residuals window, and choose 1:pupil
for level. Type 320 in the box beside the Set columns button, and click
on the button to store the computed values in a group of columns beginning
at c320. This way, we retain the columns we have used for the school-level
diagnostics.

Now select the Plots tab of the Residuals window, and choose to plot
standardised residuals against Normal scores. Note that we only have one
set of residuals at level 1, as only CONS is randomly varying at pupil level.
The graph window should look like this:
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The pupils in School 17 are shown as red triangles. As we can see, there is
one pupil at the bottom left of the plot who has a particularly high negative
residual, i.e. he is a low achiever in the overall high achieving school 17.

We will now examine the effect on the model of omitting this low achiever
from the random effects for school 17 by fitting a separate value for the low
achiever in the fixed part of the model. Click the left mouse button while
pointing at the red triangle for this pupil, which will pick the individual
out as pupil 22 in school 17. From the In graphs menu on the Identify
point tab of the Graph options window, choose to highlight this pupil with
Highlight(style 2). (Pick out the option and then click on Apply). Next,
choose the Absorb into dummy option from the In model box, and click
on Apply. If you return to the Graph display window, this particular
pupil should now be shown as a light blue triangle.

Now open the Equations window, which will have been updated to look
this:
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The dummy variable for school 17, pupil 22 has been added to the fixed part
of model, thereby excluding this pupil from the random part of the model at
the pupil level. To update the parameter estimates, click on More, and you
should get this result:

Note that the residual deviance has dropped by a little over 6 units for the
inclusion of this one extra fixed parameter, an improvement in the model
that is significant at the 0.01 level.

We can now re-examine the school-level residuals obtained from the new
model. Return to the Settings tab of the Residuals window, and choose to
calculate school-level residuals in columns c330 onwards. Go to the Plots
tab and choose to plot residuals +/- 1.4 sd x rank again. The graph
window looks like this:
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We now see that omitting the low achieving pupil within school 17 has made
school 17 even more extreme than previously for both intercept and slope at
the school level.

We can choose to create dummy variables for school 17, to fit an intercept
and slope separately from those of the other schools. Begin by selecting
one of the school 17 points on the caterpillar plot and using the Identify
point tab of the Graph options window, as before. Choose the Absorb
into dummy variable from the In model box again. This time when you
click on Apply, another window will open, asking whether you want to fit
terms for interactions with CONS and/or N-VRQ. Make sure both vari-
ables are selected, and click on Done. The Equations window is updated
automatically, and should now look like this:

We can see that two extra variables have been added into the model: an
intercept term for school 17, and a slope term. Click on More and wait for
the model to converge. The result should be:
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Note that the random parameter estimates at school level for the variances
of slopes and intercepts have both dropped noticeably, now that the most
extreme school has been excluded from the random part of the model. The
overall decrease in residual deviance is about 10.7, with the loss of two degrees
of freedom for the extra parameters included. This is highly significant, but if
we look at the individual parameter estimates, we can see that the intercept
value for school 17 is highly significant, whilst the slope value is not.

We can examine the effect of excluding the slope-related variable for school
17 by clicking on D SCHOOL(17).N-VRQ in the Equations window,
and choosing to Delete term from the model. Refit the model using More,
and the results look like the following:
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The residual deviance has only changed by a small amount, so we conclude
that greater parsimony in our model is achieved by fitting a separate intercept
for school 17 and a separate fixed effect for pupil 22 in school 17.

We can examine the predictions for the school by using the predictions
window as before. You should set it up to look like the following (saving the
predictions into c16) before clicking on Calc:

Now go to the Customised graph window, and choose display D1 as before.
Leave data set 1 as it was, and choose to edit data set 2 to show the new
predictions from the current model. Before you click on Apply, the plot
what? and position tabs should look this:
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Note that we are choosing to plot points, rather than lines. The resulting
graph should look as below, showing at the top our initial predictions from
the model as a line graph, with school 17 highlighted, and at the bottom,
our new predictions, with pupils in school 17 highlighted as red triangles.
Note the pupil (22) who does not fit on the school’s line, i.e., the one we
have chosen to exclude from the random part of the model. Note also that
there is another low achieving pupil that we could choose to exclude from
the model (see Langford & Lewis (1998) for more details on this).

We can then explore the regression diagnostics, choosing to examine partic-
ular schools or pupils as before in more detail.
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15.3 A general approach to data exploration

Suppose we are particularly interested in observations that are outlying with
respect to any of the terms with random coefficients in a model. Where
should we start data exploration after fitting a multilevel model? Rather
than looking at individual data points, we have found it most useful to begin
at the level of highest aggregation, which will often be simply the highest
level in the model. There are two reasons for this. Researchers are often most
interested in the highest level of aggregation, and will naturally concentrate
their initial efforts here. However, if discrepancies can be found in higher-
level structures, these are more likely to be indicative of serious problems
than a few outlying points in lower-level units.

After the highest level has been analysed, lower levels should be examined
in turn, with analysis and initial treatment of outliers at the lowest level
of the model. The highest level should then be re-examined after a revised
model has been fitted to the data. The objective is to determine whether
an outlying unit at a higher level is entirely outlying, or outlying due to the
effects of one or two aberrant lower-level units it contains.

Similarly, examination of lower-level units may show that one or two lower-
level units are aberrant within a particular higher-level unit that does not
appear unusual, and that the higher-level unit would be aberrant without
these lower-level units. Hence, care must be taken with the analysis not
simply to focus on interesting higher-level units, but to explore fully lower-
level units as well.

Chapter learning outcomes

? The use of diagnostic procedures for exploring multilevel models

? The importance of studying data carefully to check model assump-
tions

? How to deal with ‘discrepant’ measurements
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An Introduction to Simulation
Methods of Estimation

In the previous chapters we have used a variety of estimation procedures:
IGLS, RIGLS and MQL for Normal responses, and MQL and PQL for dis-
crete responses. These estimation procedures are all deterministic in that,
given a data set and a model, they always converge in the same number of
iterations to the same estimates. If you run the estimation procedure 100
times you get the same answers every time.

Estimation procedures can also be stochastic, that is they contain within
them simulation steps in which random numbers are sampled. These simu-
lation steps mean that every time you run the estimation procedure you get
a slightly different estimate. This obviously raises the question of what is
the correct estimate? Although this uncertainty may appear to be a disad-
vantage, simulation methods often have important advantages. For example,
more accurate, less biased estimates are delivered, and complex models are
more easily accommodated.

There are two families of simulation based estimation procedures available
in MLwiN: MCMC sampling and bootstrapping. The MCMC sampling
facilities in MLwiN are very extensive and are described in Browne (2003).

This chapter in introduces the reader to some basic simulation ideas, and
Chapter 17 describes the bootstrap facilities available in MLwiN.
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16.1 An illustration of parameter estimation

with Normally distributed data

Probably the most commonly studied data in the field of statistics involve
variables that are continuous, and the most common distributional assump-
tion for continuous data is that they are Normally distributed. One example
of a continuous data set that we will consider here is the heights of adult
males. If you were asked to estimate the average height of adult males in
Britain, how would you provide a good estimate? One approach would be to
take a simple random sample, that is travel around the country measuring
a sample of the population. Then from this sample we could calculate the
mean and use it as an estimate.

The worksheet height.ws has one column of data, named Height, which
contains the heights of 100 adult males measured in centimetres. Open this
worksheet using the Open Worksheet option on the File menu. You can
calculate the average height of the sample members via the Averages and
Correlation window that can be accessed from the Basic Statistics menu:

Select Height from the column list on the right of the window and click on
Calculate. The Output window will appear and the following results are
given for our sample:

Obviously the larger the sample of people that are measured, the more ac-
curate the mean estimate will be, and consequently the better estimate the
sample mean will be for the population mean. We can also plot the 100
heights as a histogram to give a graphical description of this data set.

� Select the Customised graph window from the Graphs menu
(shown below)

� Select Height from the y list
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� Select histogram from the plot type list

� Click Apply

The histogram shown below will now appear. Note that the shading pattern
for the bars and their colour can be altered with the options provided on the
plot style tab.

Another question that could be asked is ‘What percentage of British adult
males are over 2 metres tall?’ We can consider two approaches to answering
this question, a non-parametric approach or a parametric approach. The
non-parametric approach would be to calculate directly from the list of 100
heights the percentage of heights that are above 2 metres. In this case the
percentage is 1% as only 1 height is greater than 2 metres. The parametric
approach would involve making an assumption about the distribution of the
data. Typically we would assume that the data are Normally distributed,
which from the histogram of the 100 heights looks feasible.

We would then need to find the probability of getting the value 200 from
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a Normal distribution with a mean of 175.35 and a standard deviation of
10.002. MLwiN provides tail probabilities for a standard Normal distribution,
so we will need to Z transform our value to give (200 − 175.35)/10.002 =
2.4645. Then we use the Tail Areas window from the Basic Statistics
menu as follows:

� Select Standard Normal distribution from the Operation list

� Type 2.4645 in the Value box

� Click on Calculate

This gives the following value in the Output window:

NPRObability 2.4645 0.0068602

The parametric approach estimates that 0.68% of the population is over 2 me-
tres tall. We will be considering parametric and non-parametric approaches
again when we discuss bootstrap simulation methods.

We have not as yet used any simulation-based methods. We will now con-
sider the problem of making inferences about the mean and variance of the
population from which our sample of 100 males has been taken. Here we will
discuss three methods.

Normal Distribution Sampling Theory

In the case of a sample of Normally distributed observations of size N , dis-
tributions of the sample mean, x̄, and variance, s2, can be calculated from
sampling theory. The sample mean is Normally distributed with mean µ
and variance σ2/N . Consequently a 95% central confidence interval for µ is
x̄ ± 1.96σ/

√
N . In our sample of men’s heights, a 95% central confidence

interval for µ is 175.35 ±1.96× 10.002/
√

100 = (173.39, 177.31).

The population variance, σ2 is related to the sample variance, s2 by the
Chi-squared distribution as follows: (N − 1)s2/σ2 ∼ χ2

N−1. Consequently
a 95% central confidence interval for σ2 is ((N − 1)s2/χ2

(N−1),0.025, (N −
1)s2/χ2

(N−1),0.975). In our sample a 95% central confidence interval for σ2

is (77.12,135.00). Note that this interval is not symmetric.

Parametric and Nonparametric Bootstrapping

The mean and variance for a single sample gives us one estimate for each
population parameter. If we could get a sample of mean estimates and a
sample of variance estimates then we could use these samples to construct
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interval estimates for the underlying parameters. This idea of generating a
large number of samples to create interval estimates is the motivation behind
most simulation methods.

Bootstrapping works by constructing a series of data sets similar to our
actual data set (using the actual data set as an estimate of the population
distribution) and then using these data sets to summarise the parameters of
interest. The way the data sets are constructed depends on which type of
bootstrapping is used.

Parametric bootstrapping uses assumptions about the distribution of the data
to construct the bootstrap data sets. Consider our sample of 100 heights
that has a mean of 175.35 and a standard deviation of 10.002. To create
parametric bootstrap data sets from this data set, we simply draw multiple
samples of size 100 from a Normal(175.35, (10.002)2) distribution. Then for
each sample we calculate the parameter we are interested in.

To illustrate this bootstrapping procedure in MLwiN we will introduce the
MLwiN macro language. Using macros makes it simple to run a series of
commands1 in MLwiN repeatedly. We will now use a simple macro to perform
parametric bootstrap estimation using our sample of 100 heights.

� Select Open Macro from the File menu

� From the list of files, select hbootp.txt and click Open

The macro window shown below should now appear.

This macro above is designed to generate 10,000 samples of size 100 from a

1Virtually all menu operations in MLwiN have an equivalent command that can be
typed into the Command interface window or executed via a macro. These commands
are documented in MLwiN’s on-line Help system under Commands.
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Normal distribution with mean 175.35 and standard deviation 10.002. Then
for each sample, the mean is stored in column c3 named pmean, and the
variance is stored in column c4 named pvar.

The MLwiN commands are highlighted in blue. Highlighting a command in
the macro window and pressing F1 will bring up the Help documentation
for that command. The note command, on the green lines, is used to add
explanatory comments to a macro. All lines starting with note are ignored
when the macro is run.

Now click on Execute to run the macro. After a short time the mouse
pointer will change back from an hourglass symbol to a pointer to signify
that the macro has finished. We would now like to look at the chains of
mean and variance values in more detail.

Open the Column Diagnostics window from the Basic Statistics menu
and select the column labelled pmean. Now click the Apply button, and
after a short wait the MCMC diagnostics window will appear as below.
This diagnostics window is generally used for MCMC chains as described in
the ‘MCMC Estimation in MLwiN’ manual, so a lot of the information on
the window is irrelevant at this point.

We will concentrate on the top two graphs and the summary statistics box.
The graph on the left is a trace plot of the means of the 10,000 samples
in the order that they were generated. These 10,000 values have been used
to construct the kernel density graph on the right. A kernel density plot
(Silverman, 1986) is like a smoothed version of a histogram. Instead of being
allocated to an appropriate histogram bin, each value’s contribution to the
graph is allocated smoothly via a kernel function. As we can see, the mean
appears to be Normally distributed, which is what we expected.
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The bottom box contains various summary statistics for the mean parameter,
including quantiles that can be used to construct an interval estimate. Here
a 95% central interval is (173.39, 177.29) which compares favourably as it
should with the theoretical interval of (173.39, 177.31).

We will also look at the population variance. Select the variable pvar from
the Column Diagnostics window and click Apply. The MCMC diagnos-
tics window for the variance parameter will appear.

Here we see that the kernel density plot does not now look quite like a Normal
distribution and has a slightly longer right hand tail. This was also to be ex-
pected based on the theoretical distribution of the variance. Now if we look at
the confidence interval constructed by the quantiles we get (74.203,130.804)
which is similar to (77.120,135.003) but not as close as when we considered
the mean parameter. The method of taking the quantiles from the chains
of the distribution is known as the percentile method in the bootstrapping
literature (see Efron & Tibshirani (1993) for more details). This technique
is known to be biased for parameters with skewed distributions and with
small samples, and other methods for example the BCA method can be used
instead, but they will not be discussed here.

Nonparametric bootstrapping is another stochastic estimation technique that
we can apply to our problem. Here we do not assume a distribution for
the data but instead generate a large number of data sets by sampling (with
replacement) from the original sample. In our example we will again generate
samples of size 100 using a macro. This macro is stored in the file hboot.txt
as shown:
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This macro is rather similar to the macro for parametric bootstrapping except
for the method of generating samples. In the earlier macro we used the NRAN
and CALC commands to construct each bootstrap data set from the correct
Normal distribution. Here we use the BOOT command:

� BOOT 100 c1 c2

This command constructs a sample of size 100 in column c2 by sampling
with replacement from the values in column c1.

Open the hboot macro as before, click on Execute and the macro will run
putting the 10,000 means into column c5 named npmean and the 10,000
variances into column c6 named npvar.

Again we can look at the summaries of both of these parameters using the
Column diagnostics window. The summary for the mean is not shown
here, but it gives a central interval of (173.37, 177.32) for the population
mean. This is approximately equal to the Normal theory interval of (173.39,
177.31) expected from the central limit theorem.

Let’s look at the variance parameter. Use the Column Diagnostics window
as before to select npvar for analysis. We obtain the following display:
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Here we again see that the kernel density plot shows a slight skew to the
right. The 95% central confidence interval from the percentile method is
(74.142,127.826). This is only slightly different from the interval from the
parametric method, which shows that the Normality assumption is accept-
able in this case.

Having seen this simple illustration of simulation while knowing how easy
it is to compute theoretical intervals for the mean and variance of a Nor-
mal distribution, you may be asking yourself what benefit there is in using
simulation methods such as bootstrapping. As we have seen in earlier chap-
ters, estimation of multilevel model parameters is far more complex than
the computations used in this example. In most multilevel models iterative
routines are required to get estimates, and no simple formulas exist for the
distributions of the parameters. In situations like this, simulation techniques
come into their own. Using MCMC and bootstrapping methods, it is often
easy to generate simulated values from the distributions of the parameters
of interest and hence calculate point and interval estimates.

16.2 Generating random numbers in MLwiN

The above height data set was actually generated by simulating from a known
Normal distribution and rounding the heights to the nearest cm. MLwiN
allows you to generate random numbers from several common distributions.
To demonstrate this we will consider another example. Here we will still
consider a data set of people’s heights but this time we will consider a mixed
population of men and women. We will assume that the men are Normally
distributed with a mean of 175cm and a standard deviation of 10cm while
the women have a mean of 160cm and a standard deviation of 8cm. We will
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also assume that men make up 40% of the population while women make up
the other 60%. We will now show how to use the Generate Random Numbers
window in MLwiN to create a sample of 100 people from this population.

We will first generate 100 standard Normal random numbers from which we
will construct our sample.

� Open the Generate Random Numbers window from the Basic
Statistics menu

� In the Type of Number frame, select Normal Random Number

� Set the Output column to c7

� Set the Number of repeats to 100

� Click Generate

We now have the 100 random draws in column c7. (Incidentally this is
equivalent to the NRAN command used in the parametric bootstrap macro).
We now want to generate another 100 random numbers, this time from a
Binomial distribution, to represent whether the person is male or female. To
do this, use the Generate Random Numbers window again.

� In the Type of Number frame, select Binomial Random Num-
ber

� Set the Output column to c8

� Set the Number of repeats to 100

� Set the Probability to be 0.6

� Set the Number of Trials to be 1

� Click Generate

We can now name columns c7 ‘Normal’ and c8 ‘Female’ using the Names
window. Next we open the Calculate window from the Data Manipula-
tion menu, and create another variable ‘Male’ in c9 that is equal to 1 −
‘Female’ as follows:

� In the large calculation space on the right side, enter the following:

� c9 = 1 - 'Female'

� Click on Calculate

� Name c9 ‘Male’ using the Names window

We can now at last construct the actual height variable (c10) in a similar
way using the following formula:
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� Type the following:

� c10 = (175 + 'Normal' * 10) * 'Male' + (160 +

'Normal' * 8) * 'Female'

� Click on Calculate

We will give column c10 the name height2 using the Names window. We
can now construct a histogram to look at our data set. In this plot we will
plot the males and females in different colours to show the composition of
the mixture model.

Open the Customised graph window and choose display D1 to construct
the histogram. (If you already have a graph set up on display D1 then you
can either delete any existing data sets or use a different display number.)
We will first plot the female heights. To do this, select data set ds#1 on the
plot what? tab and make selections as follows:

The filter option tells the software to only plot points when female is equal
to 1. We also want to set different styles for the female and male heights so
we set up the plot style tab as follows:

We now need to add the male heights to the graph. To do this we assign the
male heights to data set ds#2 to be plotted on the same graph. The plot
what? tab should be set as follows:
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Again we need to set the plot style tab for this new graph. This should be
done as follows:

Having completed the set up of the two data sets, we can click the Apply
button to view the histogram. Since random numbers were used to generate
the data displayed in the histogram, your graph may differ from the one
shown here:

This graph clearly shows the two distributions from which our heights have
been generated. In this example we have the sex of each individual whose
height was measured and so we could quite reasonably fit separate Normal
models for males and females and construct interval estimates for each sep-
arately. It may, however, be the case that we do not know the sex of the
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individuals, and here we could use a nonparametric bootstrapping method
to model the data set.

Chapter learning outcomes

? That simulation-based methods can be used as an alternative to the
iterative methods used so far to fit multilevel models

? How to use bootstrapping to fit simple models

? How to generate random numbers in MLwiN

? How to execute macros in MLwiN

? How to create histograms in MLwiN
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Chapter 17

Bootstrap Estimation

17.1 Introduction

We have already introduced the idea of bootstrapping1 for a simple one-level
problem. In multilevel modelling the bootstrap can be used as an alternative
to MCMC estimation for two main purposes: (1) improving the accuracy
of inferences about parameter values and (2) correcting bias in parameter
estimates.

With continuous response models we can construct confidence intervals for
functions of the fixed parameters by assuming Normality of the random er-
rors, but this approach may not be appropriate for the random parameters
unless the number of units at the level to which the parameter refers is large.
Bootstrapping provides an improved procedure for constructing confidence
intervals for random parameters.

Bootstrap estimation is useful in fitting models with discrete responses where
the standard quasilikelihood-based estimation procedure produces estimates
— especially of the random parameters — that are downwardly biased when
the corresponding number of units is small. (See Goldstein & Rasbash (1996)
for a discussion of this problem.) The severity of this bias can be trivial in
some data sets and severe in others. A complicating factor in fitting these
models is that the bias is a function of the underlying ‘true’ value, so that
the bias correction needs to be iterative. In the next section we illustrate
how this works.

In Chapter 16 we saw how bootstrapping was used to construct several sim-
ulated data sets from the original data set and/or model parameters. Then
estimates of the parameters of interest were found for each of these new data
sets, creating a chain of values that allowed parameter estimates’ distribu-

1 For a more complete introduction to bootstrapping, see Efron & Tibshirani (1993).

255
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tional summaries to be obtained. In multilevel modelling, the implemen-
tation of bootstrapping is similar. The bootstrapping methods are used to
construct the bootstrap data sets, and then either the IGLS or RIGLS esti-
mation method is used to find parameter estimates for each data set. The
parametric bootstrap works exactly as in Chapter 16 in that the data sets
are generated (by simulation) based on the parameter estimates obtained for
the original data set. Due to the multilevel structure of the data modelled
with MLwiN, however, we cannot use the simple nonparametric approach
introduced in Chapter 16, but instead we will introduce a new method based
on sampling from the estimated residuals.

17.2 Understanding the iterated bootstrap

Suppose we simulate a data set for a simple variance components model
where the true value for the level 2 variance, σ2

u, is 1.0. Suppose also that
the standard MLwiN estimation procedure has a downward bias of 20% for
the level 2 variance parameter. If we fit this model for several simulated data
sets using the standard procedure we will obtain an average estimate of 0.8
for this parameter.

Imagine now that we have just one simulated data set with a level 2 variance
estimate that happens to be 0.8, together with fixed parameter estimates to
which we can apply the same procedure. We can now simulate (parametri-
cally bootstrap) a large number of new response vectors from the model with
level 2 variances of 0.8 and calculate the average of the variance estimates
across these new replicates. We would expect a value of 0.64 since the level 2
variance is estimated with a downward bias of 20% (0.8× 0.8 = 0.64). Now
if we add the downward bias of 0.16 to our starting value of 0.8, we obtain
a bias corrected estimate of 0.96. We can now run another set of simula-
tions, this time taking the bias corrected estimates (0.96 for the variance) as
our starting simulation values. After fitting the model to each of these new
replicates we expect an average of 0.768 for the variance parameter. This
results in a bias estimate of 0.192. We then add this estimated bias to 0.8
to give a bias corrected estimate of 0.992. We can now go on to simulate yet
another set of replicates using the latest bias corrected estimate and repeat
until the successive corrected estimates converge (see the table below). We
shall see how we can judge convergence in the example that follows. Note
that in models for which the bias is independent of the underlying true value
(additive bias), only a single set of bootstrap replicates is needed for bias
correction.
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Replicate
Set

Starting
Value

Simulated Esti-
mate
(Standard proce-
dure)

Estimate
(Bias corrected)

1 0.8 0.8*0.8 = 0.64 0.8+(0.8-0.64) = 0.96
2 0.96 0.96*0.8 = 0.768 0.8+(0.96-0.768) = 0.992
3 0.992 0.992*0.8 =

0.7936
0.8+(0.992-0.7936) =
0.9984

4 0.9984 0.9984*0.8 =
0.7987

0.8+(0.9984-0.7987) =
0.9997

5 0.9997 0.9997*0.8 =
0.7997

0.8+(0.9997-0.7997) =
1.0000

Up to the time of this release of MLwiN, the user community still has rel-
atively little experience in using bootstrap methods with multilevel models.
We suggest therefore that this procedure should be used with care. Boot-
strap estimation is based on simulation and therefore convergence is stochas-
tic. This raises the question of what is a large enough number of replicates
in each bootstrap set. On the examples tried, sets of between 300 and 1000
replicates and a series of about five sets is usually sufficient to achieve conver-
gence. The total process thus involves a substantial amount of computation.
For this reason, bootstrapping, like MCMC estimation should not be used
for model exploration, but rather to obtain unbiased estimates and more
accurate interval estimates at the final stages of analysis.

At convergence, the current replicate set can be used to generate confidence
intervals or any other desired descriptive statistic for model parameters (see
below).

17.3 An example of bootstrapping using ML-

wiN

The data for the example come from the longitudinal component of the
British Election Study (Heath et al., 1996). The data set contains records
from a subsample of 800 voters grouped within 110 voting constituencies
who were asked how they voted in the 1983 British general election. For our
purposes, the response variable has been categorized as having voted Con-
servative or not. Open the worksheet bes83.ws. The Names window shows
the following variables:
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These variables are defined as follows:

Variable Description
voter Voter identifier
area Identifier for voters’ constituencies
defence Score on a 21 point scale of attitudes towards nu-

clear weapons with low scores indicating disapproval
of Britain possessing them. This variable is centred
about its mean.

unemp Score on a 21 point scale of attitudes towards unem-
ployment with low scores indicating strong opposition
and higher scores indicating a preference for greater
unemployment if it results in lower inflation. This
variable is centred about its mean.

taxes Score on a 21 point scale of attitudes towards tax
cuts with low scores indicating a preference for higher
taxes to pay for more government spending. This
variable is centred about its mean.

privat Score on a 21 point scale of attitudes towards priva-
tization of public services with low scores indicating
opposition. This variable is centred about its mean.

votecons = 1 if the respondent voted Conservative
= 0 otherwise

cons These variables are constant (= 1) for all voters
bcons These variables are constant (= 1) for all voters
denom These variables are constant (= 1) for all voters

Begin by setting up a two-level variance components model, with voter as
the level 1 identifier, area as the level 2 identifier, votecons as the response
variable and cons, defence, unemp, taxes and privat as explanatory vari-
ables. Refer to Chapter 9 if you need detailed assistance in doing this. If you
fit this model using first order MQL, RIGLS estimation, you will obtain the
following results:
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You may wish to experiment with a range of bootstrapping options using this
as the base model, so save this model in a worksheet so you can return to it
at a later stage. To set up a bootstrap run, first click on the Estimation
control button on the main toolbar and the following window will appear:

In the Allow negative variances box, click on both At level 1 (voter)
and At level 2 (area) to change NO to YES and thus allow negative
variances at both levels. This retains any negative variances that occur in
individual bootstrap replicates, rather than setting them to zero, so that a
consistent bias correction is estimated.

We can now click on the IGLS / RIGLS bootstrap tab to display the
following:
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For the first analysis, select the parametric method of bootstrapping. (We
will discuss the nonparametric bootstrap in a later section.) Here we can
also set the number of replicates per set and the maximum number of sets.
We can also set the maximum number of iterations per replicate.

If a replicate has not converged after the specified number of iterations (these
are standard MLwiN iterations) the replicate is discarded. MLwiN does not
judge a set of replicates to be completed until the full quota of converged
replicates has been run. While the bootstrap is running, a progress count
is maintained at the bottom of the screen, and the number of discarded
replicates is also reported. If this count grows large you may wish to restart
the bootstrap with a higher setting for maximum number of iterations per
replicate. We will initially use the displayed default settings, so now click on
the Done button.

We want to watch the progress of the bootstrap as estimation proceeds, and
we can do so using the Trajectories window. The parameter whose estimate
exhibits the most bias is the level 2 (between-area) variance. We will set the
Trajectories window to show the graph for this parameter only. Note that
opening the Trajectories window will slow down the iterations.

� Open the window by selecting Trajectories from the Model menu.

� Click the Select button and choose area:cons/cons from the Se-
lect plots list that appears

� Select 1 graph per row from the drop-down list at the bottom right
of the window

� Click Done

All the bootstrap runs shown in this chapter were run with a seed value of 100
for the random number generator. If you wish to produce exactly the same
results, you can set the random number seed by opening the Command
interface window and typing the command:

� seed 100

You may prefer to set a different seed value or to let MLwiN choose its own
seed value.

Note that it is important that you do not change any other settings for the
model after running to convergence using quasilikelihood, e.g., switching
from PQL to MQL.

We can now set the bootstrap running by clicking the Start button. The
Trajectories window will display the bootstrap chain for the current repli-
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cate set. After approximately 60 replicates the bootstrap chain for the first
replicate set will look somewhat like this:

Note that since we are allowing negative variances, the sequence of estimates
crosses the x-axis. By default the values shown are not corrected for bias. We
can at any time switch between bias corrected and uncorrected estimates by
opening the Estimation control window and checking the bias corrected
estimates box. When this box is checked, another checkbox labelled scaled
SE’s appears. If you check both these boxes you will observe that the Tra-
jectories window changes as follows:

The current bootstrap estimate increases, in this case, from 0.123 to 0.165.
Note that we started with the RIGLS estimate of 0.144 and hence the bias
corrected estimate is simply calculated as 0.144 + (0.144 − 0.123) = 0.165.
The scaled SE’s option only changes the reported standard error shown in
brackets above the graph. This scaling process ensures that standard errors
and quantile estimates for bias corrected estimates are properly scaled. The
scaling is an approximation and hence scaled standard errors and quantiles
are preceded by a tilde (∼). See the Help system for more details.

It is useful to view bootstrap replicate sets as a sequence of running means
because this gives some clues about convergence. You can do this by selecting
running mean on the middle drop-down list box at the bottom of the
Trajectories window. The previous figure shows raw data (the default)
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currently selected. A converged running mean chain should be reasonably
stable.

At any point you can change from viewing the current replicate set chain to
the series of replicate set summaries by selecting series on the right hand
drop-down list on the Trajectories window’s tool bar. (The current set
option is the default.) When viewing the series of set summaries, it is more
informative to select raw data rather than running mean. After five sets
of bootstrap replicates, the series graph looks like this:

This graph is useful for judging bootstrap convergence. If we are viewing
bias corrected estimates we would expect to see this graph levelling out if
the bootstrap series has converged. This is not the case here. This means we
probably need to increase the replicate set size to reduce simulation noise.

The following figure shows the same type of series graph for a bootstrap run
with this data set and model but with the replicate set size increased from
100 to 1000 and the number of replicate sets increased from five to eight.
Note that making these increases will result in a greatly extended running
time for the full bootstrap process — up to several hours in this example.

As we might have expected, this graph is less erratic and we can therefore
have more confidence that the bootstrap has converged. In fact it looks rea-
sonably stable after set 4. From an original estimate of 0.144, the bootstrap
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process eventually produces a bias corrected estimate of 0.171.

The complete running mean sequence for the last replicate set of this run
appears as follows:

To display this graph, the running mean and current set options were
selected from the middle and right pull down lists, respectively, and the
number in the view last: box was increased to 1000. We see that this
replicate set’s result stabilised after between 200 and 400 replicates. This
means that in this example we should have been able to use a replicate set
size of 400 and a series of five sets. It is generally sensible, however, to be
cautious in selecting replicate set sizes and series lengths.

17.4 Diagnostics and confidence intervals

At any stage in the bootstrap process, when viewing a replicate set chain we
can obtain a kernel density plot and quantile estimates that are calculated
from the chain. This is achieved by clicking on the graph in the Trajectories
window for the parameter we are interested in.

The figure below shows the diagnostics obtained for a (bias corrected) repli-
cate set involving 100 replicates:
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Notice first that there is some irregularity in the kernel density plot due to
having too few replicates per set. In this case 500 may be a more suitable
number. The second thing to notice is that the area below zero on the
x-axis is shaded. This occurs because we are viewing a kernel density for
estimates of a variance parameter, and these are usually positive. Although
we allow negative estimates for variances during bootstrap estimation to
ensure consistent bias correction, when we calculate quantiles and summary
statistics, we set to zero any results that are negative.

17.5 Nonparametric bootstrapping

When we considered the single-level example in Chapter 16 with a sample of
100 heights, it was easy to perform a nonparametric bootstrap. We simply
drew samples of size 100 with replacement from the 100 heights. When we
consider a multilevel model where the responses come from different higher-
level units, an analogous approach is problematic.

Consider the tutorial example covered in the first section of the manual,
where we had 4059 students in 65 schools. If we were simply to sample pupils
with replacement then we would generate data sets that do not have the same
structure as our original data set. For example, although a particular school
may actually have 10 pupils, in the first simulated data set it could have
15 pupils generated for it, or even worse, no pupils. On the other hand,
sampling with replacement within each school is problematic because some
schools have very few pupils.

The approach used in MLwiN involves resampling from the estimated residu-
als generated from the model (as opposed to the response variable values). It
may be referred to more precisely as a semi-parametric bootstrap since the
fixed parameter estimates are used. The procedure incorporates sampling
from the unshrunken residuals to produce the correct variance estimates.
The procedure is included here for completeness and is also described in the
Help system.
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The resampling procedure

Consider the two-level model

yij = (Xβ)ij + (ZU)j + eij

UT = {U0, U1, . . .}

Having fitted the model, we estimate the residuals at each level as

Û = {û0, û1, . . .}, ê

If we were to sample these residuals directly, we would underestimate the
variance parameters because of the shrinkage. It is the case that the corre-
lation structure among the estimates within and between levels reproduces
the correct total variance when estimated residuals are used. However the
random sampling with replacement upon which bootstrap sampling of the
residuals is based will not preserve this structure and so will not generally
produce unbiased estimates of either the individual random parameters or of
the total variance and covariance of responses.

One possibility, shown already in this chapter, is to use a fully parametric
bootstrap. This, however, has the disadvantage of relying upon the Normal-
ity assumption for the residuals. Instead we can resample estimated residuals
to produce unbiased distribution function estimators, as follows.

For convenience we shall illustrate the procedure using the level 2 residuals,
but analogous operations can be carried out at all levels. Write the empirical
covariance matrix of the estimated residuals at level 2 in model (1) as

S =
ÛT Û

M

and the corresponding model estimated covariance matrix of the random
coefficients at level 2 as R. The empirical covariance matrix is estimated
using the number of level 2 units, M , as divisor rather than M − 1. We
assume that the estimated residuals have been centred, although centring
will only affect the overall intercept value.

We now seek a transformation of the residuals of the form

Û∗ = ÛA



266 CHAPTER 17.

where A is an upper triangular matrix of order equal to the number of random
coefficients at level 2, and such that

Û∗T Û∗ = AÛT ÛA = ATSA = R

The new set of transformed residuals Û∗ now have covariance matrix equal
to the one estimated from the model, and we sample sets of residuals with
replacement from Û∗. This is done at every level of the model, with sampling
being independent across levels.

To form A we note that we can write the Cholesky decomposition of S in
terms of a lower triangular matrix as S = LSLS

T and the Cholesky decom-
position of R as R = LRLR

T . We then have

LRLS
−1ÛT Û(LRLS

−1)T = LRLS
−1S(L−1

S )T (LR)T = LR(LR)T = R

Thus, the required matrix is

A = (LRLS
−1)T

and we can hence find the Û∗ = ÛA and then use them to bootstrap a new
set of level 2 residuals. MLwiN automatically carries out these calculations
when using the nonparametric procedure.

Example using the British Election Study data set

Although the nonparametric and parametric bootstrap procedures differ in
their methods for creating the bootstrap data sets, they both produce chains
of parameter estimate values. We will now repeat our analysis of the bes83.ws
data set using the nonparametric bootstrap. The seed value of 100 is again
used for the random number generator to produce the results shown in this
section.

To start the example, retrieve the worksheet, set up the model as in Section
17.3 and fit it using first order MQL RIGLS estimation. Note that if you
have just worked through the parametric bootstrap example, the model is
already set up and you simply need to change estimation method to RIGLS
and refit the model.

We now want to select the bootstrap method. Click on the Estimation
control button on the main toolbar and the IGLS / RIGLS options will
appear in the Estimation control window. Ensure that you set both lev-
els to YES in the Allow negative variances box before you click on the
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IGLS / RIGLS bootstrap tab. Now select the nonparametric boot-
strap option from the Method box. We will leave the other parameters at
their default values so that the window appears as below. Having set the
parameters, click on Done to continue.

We can now repeat the analysis performed in Section 17.3 with the nonpara-
metric bootstrap.

Click on the Start button on the main toolbar to set the nonparametric
bootstrap running. After 60 or so replicates, the bootstrap chain for the first
replicate set of the level 2 variance parameter should look like this:

We can again switch from uncorrected to bias corrected estimates by checking
the bias corrected estimates box in the Estimation control window.
Doing so and selecting scaled SEs will transform the Trajectories window
as follows:
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In Section 17.3 we saw that running five sets of 100 iterations was not enough
for the parametric bootstrap. A similar result will be seen for the nonpara-
metric procedure. We will skip the illustration of this finding and instead
immediately increase the replicate set size to 1000 and the number of repli-
cate sets to eight. Note again that to run the bootstrap with this model and
data set takes several hours on most computers.

The graph below shows a plot of the (bias corrected) series means for the
level 2 variance parameter using nonparametric bootstrapping. This graph
compares favourably with the graph for the parametric bootstrap, which had
final estimate 0.171(∼0.124).

Here we see that the graph looks fairly stable after step 3, and from an
original estimate of 0.144 the bootstrap eventually produces a bias corrected
estimate of 0.173. The graph of the running mean sequence for the last
replicate set on this bootstrap is as follows:
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We see that this replicate set has stabilised by the time 200 replicates have
been reached. This means that for the nonparametric bootstrap on this
example we could probably have used a replicate set size of 250 and a series
of 5 sets. It is generally sensible, however to select replicate set size and
series lengths that are conservative.

To use the last chain to get interval estimates for this parameter, we first
need to select raw data instead of running mean from the middle drop-down
option box at the bottom of the Trajectories window. This will bring up
the actual chain of 1000 bootstrap replicates in the final replicate set. Now
clicking on the Trajectories window display will bring up the Bootstrap
Diagnostics window as shown below.

Here we see that running 1000 replicates produces a smoother curve than
seen in the earlier plot for the parametric bootstrap based on 100 replicates.
We again see here that both the 2.5% and 5.0% quantiles are estimated as
zero as they correspond to negative values in the kernel density plot. This
means that for our model, the level 2 variance is not significantly different
from zero.
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Chapter learning outcomes

? How to use the bootstrap options in MLwiN

? How the iterative bootstrap gives unbiased estimates

? The difference between parametric and nonparametric bootstrap-
ping.



Chapter 18

Modelling Cross-classified Data

18.1 An introduction to cross-classification

An important motivation for multilevel modelling is the fact that most so-
cial processes we wish to model take place in the context of a hierarchical
social structure. The assumption that social structures are purely hierar-
chical, however, is often an over-simplification. People may belong to more
than one grouping at a given level of a hierarchy and each grouping can
be a source of random variation. For example, in an educational context
both the neighbourhood a child comes from and the school a child goes
to may have important effects. A single school may contain children from
many neighbourhoods and different children from any one neighbourhood
may attend several different schools. Therefore school is not nested within
neighbourhood and neighbourhood is not nested within school: instead, we
have a cross-classified structure. The consequences of ignoring an important
cross-classification are similar to those of ignoring an important hierarchical
classification.

A simple model in this context can be written as:

yi(jk) = α + uj + uk + ei(jk) (18.1)

where the achievement score yi(jk) of the ith child from the (jk)th school
/ neighbourhood combination is modelled by the overall mean α, together
with a random departure uj due to school j, a random departure uk due to
neighbourhood k, and an individual-level random departure ei(jk).

The model can be elaborated by adding individual-level explanatory vari-
ables, whose coefficients may also be allowed to vary across schools or neigh-
bourhoods. Also, school or neighbourhood level variables can be added to
explain variation across schools or neighbourhoods.

271
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Another type of cross-classification occurs when each pupil takes a single
exam paper that is assessed by a set of raters. If a different set of raters
operates in each school, we have a pupil / rater cross-classification at level
1 nested within schools at level 2. A simple model for this situation can be
written as:

y(ij)k = α + uk + eik + ejk (18.2)

where the rater and pupil effects are modelled by the level 1 random variables
eik and ejk. The cross-classification need not be balanced, and some pupils’
papers may not be assessed by all the raters.

Yet another example involves repeated measures. Suppose a sample of differ-
ent veterinarians measured the weights of a sample of animals, each animal
being measured once. If independent repeat measurements were made by
the vets on each animal, this would become a level 2 cross-classification with
replications within cells. In fact, we could view the first case as a level 2
classification where there just happened to be only one observation per cell.
Many cross-classifications will allow such alternative design interpretations.

Let’s return to our second example involving the schools and raters. If the
same set is used in different schools, then raters are cross-classified with
schools. An equation such as (18.1) can be used to model this situation, where
now k refers to raters rather than neighbourhoods. If in addition, schools are
crossed by neighbourhoods, then pupils are nested within a three-way rater /
school / neighbourhood classification. For this case we may extend equation
(18.1) by adding a term ul for the rater classification as follows:

yi(jkl) = α + uj + uk + ul + ei(jkl) (18.3)

If raters are not crossed with schools, but schools are crossed with neigh-
bourhoods, a simple formulation might be:

y(ij)(kl) = α + uk + ul + ei(kl) + ej(kl) (18.4)

where now i refers to pupils, j to raters, k to schools, and l to neighbourhoods.

Other applications are found, for example, in survey analysis where inter-
viewers are crossed with enumeration areas.
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18.2 How cross-classified models are imple-

mented in MLwiN

Suppose we have a level 2 cross-classification with 100 schools drawing pupils
from 30 neighbourhoods. If we sort the data into school order and ignore the
cross-classification with neighbourhoods, the schools impose the usual block-
diagonal structure on the N ×N covariance matrix of responses, where N is
the number of students in the data set. To incorporate a random neighbour-
hood effect we must estimate a non-block-diagonal covariance structure.

We can do this by declaring a third level in our model with one unit that
spans the entire data set. We then create 30 dummy variables-one for each
neighbourhood-and allow the coefficients of these to vary randomly at level
3 with a separate variance for each of our 30 neighbourhoods. We constrain
all 30 variances to be equal.

We can allow other coefficients to vary randomly across schools by putting
them in the model as level 2 random parameters in the usual way. If we
wish the coefficient of a covariate — a slope — to vary randomly across
neighbourhoods, the procedure is more complicated. We must create 30
new variables that are the product of the neighbourhood dummies and the
covariate. These new variables are set to vary randomly at level 3. If we wish
to allow intercept and slope to covary across neighbourhoods, we require 90
random parameters at level 3: an intercept variance, a slope variance and
an intercept / slope covariance for each of the 30 neighbourhoods. As before
we constrain the intercept variances, the covariances and the slope variances
to produce three common estimates. The SETX command is provided to
automate this procedure.

It is important to realise that although in this example we have set up a
three-level MLwiN structure, conceptually we have only a two-level model,
but with neighbourhood and school crossed at level 2. The third level is
declared as a device to allow us to estimate the cross-classified structure.
The details of this method are given in Rasbash & Goldstein (1994).

18.3 Some computational considerations

Cross-classified models can demand large amounts of storage for their esti-
mation and can be computationally intensive. The storage required to run a
model, in worksheet cells, is given by:

3neb+ nfb+
l=L∑
l=1

4rlb+ 2brmax (18.5)
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where

b is the number of level 1 units in the largest highest-level unit
ne is the number of explanatory variables
nf is the number of fixed parameters
L is the number of levels in the model
rl is the number of variances being estimated at level l (covariances add no
further space requirements)
rmax is the maximum number of variances at a single level

In cross-classified models, ne will be large, typically the size of the smaller
classification, and b will be equal to the size of the entire data set. These facts
can lead to some quite devastating storage requirements for cross-classified
models. In the example of 100 schools crossed with 30 neighbourhoods,
suppose we have data on 3000 pupils. The storage required to handle the
computation for a cross-classified variance components model is:

3neb+ nfb+
l=L∑
l=1

4rlb+ 2brmax

3 ∗ 30 ∗ 3000 + 3000 + 4(3000 + 3000 + 30 ∗ 3000) + 2 ∗ 3000 ∗ 30

that is, some 840,000 free worksheet cells. If we wish to model a slope that
varies across neighbourhoods, then the storage requirement doubles.

These storage requirements can be reduced if we can split the data into
separate groups of schools and neighbourhoods. For example, if 40 of the 100
schools take children from only 12 of the 30 neighbourhoods, and no child
from those 12 neighbourhoods goes to a different school, then we can treat
those 40 schools by 12 neighbourhoods as a separate group. Suppose that
in this way we can split our data set of 100 schools and 30 neighbourhoods
into 3 separate groups, where the first group contains 40 schools and 12
neighbourhoods, the second contains 35 schools and 11 neighbourhoods and
the third contains 25 schools and 7 neighbourhoods. We can then sort the
data on school within group and make group the third level. We can do
this because there is no link between the groups and all the covariances we
wish to model are contained within the block diagonal matrix defined by the
group blocks.

For a cross-classified variance components model ne is now the maximum
number of neighbourhoods in a group, that is 12, and b is the size of the
largest group, say 1800. This leads to storage requirements of:

3 ∗ 12 ∗ 1800 + 1800 + 4(1800 + 1800 + 12 ∗ 1800) + 2 ∗ 1800 ∗ 12
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that is, about 210,000 free worksheet cells.

Finding such groupings not only decreases storage requirements but also
significantly improves the speed of estimation. The command XSEArch is
designed to find such groups in the data.

18.4 Modelling a two-way classification: An

example

In this example we analyse children’s overall exam attainment at age sixteen.
The children are cross-classified by the secondary school and the primary
school that they attended. The model is of the form given in equation (18.1)
where uj is a random departure due to secondary school and uk is a random
departure due to primary school. The data are from 3,435 children who
attended 148 primary schools and 19 secondary schools in Fife, Scotland.

The initial analysis requires a worksheet size of just under 1000 k cells, less
than the default size for an MLwiN worksheet. Note that the default size
can be changed from 5000 k cells using the Options menu.

Retrieve the worksheet xc.ws. Opening the Names window shows that the
worksheet contains 11 variables:

Variable Description
VRQ A verbal reasoning score resulting from tests pupils took

when they entered secondary school.
ATTAIN Attainment score of pupils at age sixteen.
PID Primary school identifying code
SEX Pupil’s gender
SC Pupil’s social class
SID Secondary school identifying code
FED Father’s education
CHOICE Choice number of secondary school attended
MED Mother’s education
CONS Constant vector
PUPIL Pupil identifying code

In the following description we shall be using the Command interface
window to set up and fit the models. A two-level variance components model
with primary school at level 2 is already set up. To add the secondary school
cross-classification, we need to do the following: create a level 3 unit spanning
the entire data set; create the secondary school dummies; enter them in the
model with random coefficients at level 3 and create a constraint matrix
to pool the 19 separate estimates of the secondary school variances into
one common estimate. We declare the third level by typing the following
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command:

� IDEN 3 'CONS'

The remaining operations are all performed by the SETX command, whose
syntax is given at the end of this chapter.

The first component specified on this command is the set of columns with
random coefficient at the pseudo-level introduced to accommodate the cross-
classification; in our case, this is a single column, CONS. The pseudo-level
(3) is specified next. Then comes the column containing the identifying codes
for the non-hierarchical classification, which in our case is SID.

The SETX command requires the identifying codes for the cross-classified
categories to be consecutive and numbered from 1 upwards. If a different
numbering scheme has been used, identifying codes can be put into this
format using the MLREcode command. Here is an example:

� NAME C12 'NEWSID'

� MLRE 'CONS' 'SID' 'NEWSID'

Our secondary and primary identifying codes are already in the correct for-
mat so we do not need to use the MLREcode command.

The dummies for the non-hierarchical classification are written to the next
set of columns. The dummies output are equal in number to k*r where k is
the number of variables in <explanatory variable group> and r is the number
of identifying codes in <ID column>. They are ordered by identifying code
within explanatory variable. The constraint matrix is written to the last
column. In addition the command sets up the appropriate random parameter
matrix at level 3.

To set up our model, enter the following command:

� SETX 'CONS' 3 'SID' C101-C119 C20

If you examine the settings by typing the SETT command, you will see
in the Output window that the appropriate structures have been created.
Before running the model we must activate the constraints by typing

� RCON C20
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The model will take some time to run. Four iterations are required to reach
convergence. The results are as follows:

Parameter Description Estimate (SE)

σ2
uj Between-primary-school variance 1.12 (0.20)

σ2
uk Between-secondary-school variance 0.35 (0.16)

σ2
e Between-individual variance 8.1 (0.2)

α Mean achievement 5.50 (0.17)

This analysis shows that the variation in achievement at age sixteen at-
tributable to primary school is three times greater than the variation at-
tributable to secondary school. This type of finding is an intriguing one for
educational researchers and raises many further issues for further study.

Explanatory variables can be added to the model in the usual way to attempt
to explain the variation.

We must be careful if we wish to create contextual secondary school vari-
ables using the ML** family of commands (or equivalent instructions via the
Multilevel Data Manipulation window). The data are currently sorted
by primary school, not secondary school, as these manipulations require.
Therefore the data must be sorted by secondary school, the contextual vari-
able created, and the data re-sorted by primary school.

18.5 Other aspects of the SETX command

When more than one coefficient is to be allowed to vary across a non-
hierarchical classification, in some circumstances you may not wish the co-
variance between the coefficients to be estimated. This restriction can be
achieved most easily by using two successive SETX commands. The follow-
ing three examples illustrate this approach.

Example 1

� SETX 'CONS' 3 'SID' C101-C119 C20

This sets up the data for the cross-classified variance components model we
have just run.
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Example 2

Assuming the model is set up as in example 1 and the constraint matrix is
activated, if we now type

� SETX 'VRQ' 3 'SID' C121-C139 C20

we shall have the structure for estimating the variance of the coefficients of
VRQ and CONS across secondary schools. The intercept / slope covariance
will not be estimated. If you want to run this model, you will be told that
you need to increase the worksheet size.

Example 3

The commands shown in this example section 3 are for demonstration only.
The model suggested here will not converge with the current data set.

If no cross-classified structure has yet been specified and we type

� SETX 'CONS' 'VRQ' 3 'SID' C101-C119 C121-C139 C20

we shall have the structure for estimating the variances of the coefficients
of VRQ and CONS across secondary schools and their covariance. If you
wish to issue this SETX command following the previous analysis you must
first remove all the explanatory dummy variables (see below).

The SETX command adds the constraints it generates to any existing con-
straints that have been specified with the RCON command. Any additional
random-parameter constraints must be activated using RCON before issuing
any new SETX command. In particular, when elaborating cross-classified
models with more than one SETX command, you must be sure to activate
the constraint column generated by the first SETX before issuing second
and subsequent SETX commands. Failure to do so will cause the first set
of constraints not to be included in the constraints output by the second
SETX command.

One limitation of the SETX command is that it will fail if any of the dummy
variables it generates are already in the explanatory variable list. One situ-
ation where this may occur is when we have just estimated a cross-classified
variance components model and we wish to expand it to a cross-classified
random coefficient regression model in which slope / intercept covariances
are to be estimated. In this case typing
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� SETX 'CONS' 'VRQ' 3 'SID' C101-C119 C121-C139 C20

will produce an error message, since C101-C119 will already be in the ex-
planatory variable list. The problem can be avoided by removing C101-
C119 and then entering the SETX command:

� EXPL 0 C101-C119

� SETX 'CONS' 'VRQ' 3 'SID' C101-C119 C121-C139 C20

Note that if the random constraint matrix is left active, the above EXPL
0 command will remove from the matrix the constraints associated with
C101-C119, leaving only those that the user had previously specified.

After a SETX command, estimation must be restarted using the STARt
command or button.

18.6 Reducing storage overhead by grouping

We can increase speed and reduce storage requirements by finding separate
groups of secondary/primary schools as described above. The XSEArch
command will do this.

Retrieve the original worksheet in xc.ws. We can search the data for sepa-
rated groups by typing

� XSEArch 'PID' 'SID' C13 C14

Looking at C13, the column of separated groups produced, in the Names
window, we see that it is a constant vector. That is, no separation can be
made and all primary and secondary schools belong to one group. The new
category codes in C14 therefore span the entire range (1 to 19) of categories
in the original non-hierarchical classification. This is not surprising since
many of the cells in the 143 by 19 table contain very few individuals. It is
this large number of almost empty cells that makes separation impossible.
In many circumstances we may be prepared to sacrifice some information by
omitting cells with very few students. We can omit data for cells with less
than a given number of individuals using the XOMIt command.

In our case we can omit cells containing 2 or fewer members by typing
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� XOMIt 2 C3 C6 C1-C2 C4-C5 C7-C11 C3 C6 C1-C2 C4-C5 C7-C11

If we now repeat the XSEArch command exactly as before, we find that
c13, the group code column, contains 6 unique group codes (1, 2, 3, 5, 7
and 13) indicating that six groups have been found. The new category codes
have a range from 1 to 8 indicating that the maximum number of secondary
schools in any group is eight. You can use the Tabulate window to produce
tables of secondary school and primary school by group. This confirms that
with our reduced data set no primary school or secondary school crosses a
group boundary.

We now sort the data by primary school within separated group. The group
codes are now used to define a block diagonal structure for the variance-
covariance matrix at level 3, which reduces the storage overhead and speeds
up estimation. The following commands set up the model:

� SORT 2 c13 c3 C1 C2 C4-C11 C14 C13 C3 C1 C2 C4-C11 C14

� IDEN 3 C13

� SETX 'CONS' 3 C14 C101-C108 C20

� RCON C20

Notice that the new category codes in C14 running from 1 to 8 (the maximum
number of secondary schools in a separated group) are now used as the
category codes for the non-hierarchical classification. This means we now
need only 8 as opposed to 19 dummies to model this classification.

Estimation proceeds more than four times faster than in the full model, with
very similar results.

Parameter Description Estimate(se)

σ2
uj between primary school variance 1.10(0.20)

σ2
uk between secondary school variance 0.38(0.19)

σ2
e between individual variance 8.1(0.2)

α mean achievement 5.58(0.18)

18.7 Modelling a multi-way cross-classification

The commands described above can also be used to model multi-way clas-
sifications. For example, our secondary school by primary school cross-
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classification could be further crossed, say by neighbourhoods, if neighbour-
hood identification was available.

In general we can model an n-way classification by repeated use of the
XSEArch command to establish a separated group structure and then re-
peated use of the SETX command to specify each classification.

18.8 MLwiN commands for cross-classifications

The commands used here are described in the MLwiN Help system. Their
syntax is as follows:

XOMIt

XOMIt cells with not more than <value> members from the cross-
classification defined by <input column-1> and <input column-2>
{carrying data in <input data group>} results to <output column-
1> <output column-2> {and carried data to <output data group>}

XSEArch

XSEArch for separable groups in the cross-classification defined by
<column-1> and <column-2> putting separated group codes in <group
ID column> and new categories in <new ID column>

The first two columns describe the cross-classification to be searched.
The non-hierarchical classification is specified by <column-2>. If
separable groups can be found, they are assigned group codes 1, 2,
etc. and these are placed in <group ID column>. The category codes
of <column-2> are then recoded in <new ID column> to run from 1
within each group.

SETX

SETX set a random cross-classification, with coefficients of <explanatory
variable group> random at level <value> across categories in <ID
column>, storing dummies in <output group> and constraints in
<constraints column>

<explanatory variable group> specifies the variables whose coefficients
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we wish to vary randomly across the non-hierarchical classification.

Chapter learning outcomes

? What a cross-classification is

? How to set up and fit a cross-classified model



Chapter 19

Multiple Membership Models

Multiple membership models are used in situations where level 1 units belong
to two or more higher-level units. In a longitudinal study of school students,
for example, many will change their schools and thus ‘belong’ to more than
one school during the study. When modelling such data, a student receives a
weighted combination of residuals from all the schools to which the student
belongs. To allocate the school effects appropriately, we need to construct a
set of weights for each student that specify the student’s school membership
pattern.

19.1 A simple multiple membership model

Let’s examine a simple variance components model of this kind. Suppose
that we know, for each individual, the weight πij2 , associated with the j2-th
secondary school for student i (for example, the proportion of time spent in

that school) with
J2∑
j2=1

πij2 = 1.

yi(j2) = (Xβ)i(j2) +
∑
j2

u
(2)
j2
πij2 + ei(j2)∑

j2

u
(2)
j2
πij2 = πiu

(2)

u(2)
T

= {u(2)1 , . . . u
(2)
J2
}

π = {π1, . . . πJ2A}
πTj2 = {π1j2 , . . . πNj2}

where N is the total number of students and u(2)is the J2 × 1 vector of
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secondary school effects. This is therefore a two-level model in which the
level 2 variation among secondary schools is modelled using the J2 sets of
weights for student i (π1, . . . πJ2) as explanatory variables, with πj2 the N x
1 vector of student weights for the j2th secondary school. We have

var(u
(2)
j2

) = σ2
u2

cov(u
(1)
j1
u
(2)
j2

) = 0

var(
∑
j2

u
(2)
j2
πij2) = σ2

u2

∑
j2

π2
ij2

These models can also be extended to deal with cases where higher-level unit
identifications are missing. For details of these models with an example see
Hill & Goldstein (1998).

There are two new commands that together can be used for specifying such
multiple membership models. These are WTCOl and ADDM.

Note that the last letter of the command WTCOl is a letter ‘l’ rather
than a number ‘1’.

Let’s first consider the use of the WTCOl command. Suppose we have a
model with pupils nested within schools and we have only one response per
pupil. However, some pupils attend more than one school during the study
and we know the identities of the schools they attended and have information
on how much time they spent in each school.

Similarly to a cross-classified model, we create a set of indicator variables, one
for each school. Where a pupil attends more than one school they require the
indicator variable for each school they attended to be multiplied by a weight,
which for example could be based upon the proportion of time the pupil
spent at that school. The indicator variables for all the schools the pupil did
not attend are set to zero. It is this set of weighted indicator variables that is
made to have random coefficients at level 2. As with cross-classified models,
level 3 is set to be a unit spanning the entire data set and the variances of
all the indicator variable coefficients are constrained to be equal.

The WTCOl command can be used to create the weighted indicator vari-
ables. If we have 100 schools and the maximum number of schools attended
by a pupil is 4 then the WTCOl command would be

� WTCOl 4, id columns C1-C4, weights in C5-C8, weighted

indicator columns output to C101-C200
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Suppose pupil 1 attends only school 5, pupil 2 attends schools 8 and 9 with
proportions 0.4 and 0.6 and pupil 3 attends schools 4, 5, 8 and 6 with pro-
portions 0.2, 0.4, 0.3 and 0.1. Then the id and weight columns for these 3
pupils would contain the data

c1 c2 c3 c4 c5 c6 c7 c8
5 0 0 0 1 0 0 0
8 9 0 0 0.4 0.6 0 0
4 5 8 6 0.2 0.4 0.3 0.1

The first 9 columns of the output for these three children would be

c101 c102 c103 c104 c105 c106 c107 c108 c109
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0.4 0.6
0 0 0 0.2 0.4 0.1 0 0.3 0

The second command is the ADDM command. This command adds sets
of weighted indicator variables created by the WTCOl command to the
random part of the model at level M and generates a constraint matrix that
defines the variances estimated for each set of indicators to be equal. It is
possible to have more than one set of indicators if you wish to allow several
random coefficients to vary across the multiple membership classification.

Continuing from the example outlined in the description of the WTCOl com-
mand, we first consider a variance components multiple membership model.
In this case we enter:

� ADDM 1 set of indicators at level 2, in C101-C200,

constraints to C20

If we wish to allow the slope of an X variable, say “PRETEST”, in addition to
the intercept, to vary randomly across the multiple membership classification,
we must then form another set of indicators that are the product of the
original indicators and “PRETEST”. To do this enter:

� LINK C101-C200 G1

� LINK C201-C300 G2

� CALC G2=G1*'PRETEST'

� ADDM 2 sets of indicators at level 2, first set in

C101-C200, second set in C201-C300, constraints to C20
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The first LINK command puts the original indicators in group 1 (G1), and
the second sets up a group (G2) for interactions. The CALC command
creates the interactions. The ADDM command will place the two sets of
indicators in the random part of the model as well as associated covariance
terms between the two sets and establish the appropriate constraints in C20.

Note that the ADDM command will not add its constraints to any
existing constraints in the model.

19.2 MLwiN commands for multiple mem-

bership models

The commands used here are described in the MLwiN Help system. Their
syntax is as follows:

WTCOl <value> id columns <group 1> weights in columns <group 2>
weighted indicator columns to <group 3>

ADDM <value> sets of indicators at level <value>, first set in <group>,
second set in <group>, . . . , constraints to <column>

Chapter learning outcomes

? What a multiple membership model is

? How to specify a multiple membership model in MLwiN
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