Optimisation of variable-stiffness cylinders under axial compression with realistic imperfections

Reece Lincoln (presenting author), Prof. Paul Weaver, Dr Alberto Pirrera, Dr Rainer Groh

Bristol Composites Institute Postgraduate Research and Training Showcase

13th April 2021

bristol.ac.uk/composites
Contents

- Context
 - Cylinders and tow shearing
 - Nomenclature
- Optimisation
- Results
- Conclusions and future work
Context – Cylinders and tow shearing

- Due to sensitivity to geometric imperfections [2]

\[
KDF = \frac{p_{\text{ex}}}{p_{\text{th}}}
\]

- Steer fibres to tailor load paths
- Reduced imperfection sensitivity due to symmetry-breaking effect of anisotropic stiffness [3]

Reece Lincoln
BCI 13th April 2021
Continuous Tow Shearing (CTS)

- Automated Fibre Placement (AFP) derived mechanism to place curvilinear tow paths [5]
 - Shears tows instead of in-plane bending of tows
 - Eliminates fibre buckling, fibre straightening, ply gaps, ply overlaps, has a smaller steering radii and perfect tessellation
- Additional design feature is a fibre-angle thickness coupling
 - Shearing by an angle θ results in a thickness build-up
 $$ t = t_0 / \cos(\theta) $$

Bristol Composites Institute (ACCISS)

Reece Lincoln
BCI 13th April 2021
Context – Nomenclature

- Adaptation of Gürdal and Olmedo [6]

\[\phi(T_0 | T_1)^n \]

- Where:
 - \(\phi = [0, 90] \)
 - \(n = [0, 1, \ldots, 10]_{\phi=0} \)
 \[= [0, 1, \ldots, 18]_{\phi=90} \]
 - \(T_0 = [0, 5, \ldots, 70] \)
 - \(T_1 = [0, 5, \ldots, 70] \)
Optimisation

• Realistic imperfection signatures [7], ‘reliability-based genetic algorithm’ (GA)

• First-Order Second-Moment (FOSM) methodology [7] implemented into GA

• Maximize $\bar{P}_{\text{imp}}^{\text{FOSM}}$ ($\bar{P}_{\text{imp}}^{\text{FOSM}} = \bar{P}_{\text{imp}}^\mu - b \cdot \bar{P}_{\text{imp}}^\sigma$)

 • \bar{P}_{imp}^μ is the specific, imperfect buckling of the mean imperfection signature

 • b is a reliability factor (assuming normal distribution and 99.9% of cases)

 • $\bar{P}_{\text{imp}}^\sigma$ is the standard deviation of buckling loads across the imperfection data set

Results

• GA-optimum has higher $\tilde{P}_{\text{imp}}^{\text{FOSM}}$ than QI

<table>
<thead>
<tr>
<th>Layup</th>
<th>$\tilde{P}_{\text{imp}}^{\text{FOSM}}$ [kN / kg]</th>
<th>$\tilde{P}_{\text{imp}}^{\mu}$ [kN / kg]</th>
<th>$\tilde{P}_{\text{imp}}^{\sigma}$ [kN / kg]</th>
<th>var(\tilde{P}_{imp})</th>
<th>KDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\pm 45, 0, 90]_s$</td>
<td>9.22</td>
<td>49.7</td>
<td>13.1</td>
<td>171</td>
<td>0.152</td>
</tr>
<tr>
<td>$[\pm 90(65</td>
<td>60)^2, 0(0</td>
<td>20)^9]_s$</td>
<td>36.9</td>
<td>55.1</td>
<td>5.88</td>
</tr>
<tr>
<td>$\Delta%$</td>
<td>+120</td>
<td>+10.3</td>
<td>-76.1</td>
<td>-133</td>
<td>+166</td>
</tr>
</tbody>
</table>

• ‘Reliability-based’ KDF calculated from

\[
\text{KDF} = \frac{\tilde{P}_{\text{imp}}^{\text{FOSM}}}{\tilde{P}_{\text{perf}}}
\]
Conclusions and future work

- Novel probabilistic ‘imperfect-geometry’ optimisation
- Realistic data bank of imperfections of composite cylinders
- Reliability has been increased through an increase in mean buckling load and decrease in std. and var

Reece Lincoln
BCI 13th April 2021
Thank you for listening

reece.lincoln@bristol.ac.uk

Poster: Optimisation of variable-stiffness cylinders under axial compression with realistic imperfections

bristol.ac.uk/composites