Determination of the longitudinal compressive strength of a Carbon/Epoxy UD ply with bending, compressive and tensile tests

F. Laurin, F.X. Irisarri, P. Paulmier (ONERA)
Introduction

\(X_c \) is critical for design of large parts

Different tests to characterize \(X_c \):
- Are the experimental data consistent?
- Choice of the modelling scale?

Bending tests
- Alternative tests
 - 4-point bending test
 - Compression with pivot device test
 - Analysis with FE non linear models
 - High strength value

Compression tests
- Standard tests
 - Load introduction:
 - ASTM D695-15
 - ASTM D3410
 - ASTM D6641
 - Compressive tests on UD plies or laminates

Innovative tensile test
- Innovative tests
 - Optimization of lay-up to fail central 90-ply in longi. compression without any damage
 - Tensile tests on a specific laminate

Determination of the longitudinal compressive strength of UD plies
Compressive tests on UD plies

Standard compression tests

T700GC/M21 material (268g/m²)
6 specimens 16 plies - [0₈]ₙ
manufactured with heating-press at Onera

Specimens with small free lengths
10mmx10mmx4.2mm
Loading introduced by pushing on edges

Failure pattern analysis:
Premature kinking within the tab region
Failure close to the jaws (angle at 15°)
Large scattering (10%) on strength

$X_c = -880$ MPa
CV = 9.9%

Determination of the longitudinal compressive strength of UD plies
Bending tests on UD plies

- **Bending tests**
 - [Callus 07, Laurin 16]

- **Failure mode relevant** (no buckling, far from jaws)

- **Test analysis with complex FE simulations**
 - Geometrical and material non linearities (with $E_{11} \neq E_{c11}$)

- **Very high compressive strengths** (from FE simulation)

Compression with pivot

16 plies

$X_c = -1350 \text{ MPa}$

CV = 4.5%

32 plies

$X_c = -1220 \text{ MPa}$

CV = 2.8%

100/0/0 laminate

16 plies

Failure mode relevant (no buckling, far from jaws)

Test analysis with complex FE simulations

Geometrical non linearity

Tension ≠ Compression moduli

[Callus 07, Laurin 16]

[Julien 15]
Innovative tensile tests on a specific laminate

Proposition of innovative tests

- **Tensile test which fails in compression**
 - Tension test on a specific laminate failed by fibre kinking
 - Failure is due to *Poisson effect* located at mid-width
 - Analysis with CLT extended to non-linear behaviour
 - No transverse crack prior failure in compression

- **High compressive strengths with low scattering**
 Value embedded between compression and bending on UD plies

\[\sigma_c = -1025 \text{MPa} \]
\[\text{CV} = 1.9\% \]

- **Standard**
- **Type A**
- **Type B**
- **Tension test**

![Tensile test on specific laminate](image)

Fibre kinking in 90-ply

SEM

X-Ray CT

Determination of the longitudinal compressive strength
Analysis of the available tensile tests

Model proposed by Grandidier et al.

Analytical formula for longi. compression strength σ_c
- Based on FE simulations at microscale
- Take into account type of loadings, ply position, ply thickness

$$\sigma_c = \frac{G}{1 + n\left(\frac{3}{2}\right)^{1/n} \left(\frac{\phi/n}{\gamma_c/n-1}\right)^{(n-1)/n} + (2r_g)f\pi \frac{E_mE_F}{(1-\nu_m)^2}(1-f)}$$

Micro-buckling mechanism
- Φ: fiber misalignment

Structural effect
- γ_{12}: longitudinal compressive strength (MPa)
- ℓ: ply thickness

Data at microscale
- (E_p, E_m, ν_m) from literature

Test data are consistent (except standard test)

Microscale is promising

Determination of the longitudinal compressive strength of UD plies