Optimal V-Notched Shear Testing of Composite Laminae and Laminates

Dan Adams
Vice President
Wyoming Test Fixtures, Inc.
Salt Lake City, UT, USA
and
Emeritus Professor of Mechanical Engineering
University of Utah
Salt Lake City, UT, USA

Shear Strength Workshop
March 7, 2022
Optimal Shear Test of Composites:
What attributes come to mind?

Within the “test section”:

- Uniform state of shear stress
- “Pure shear” - no other stress components
- Higher magnitude of shear stress than other regions of the specimen
- Shear failure produced in test section
Comparison of V-Notched Shear Tests: Test Fixtures and Specimens

- **V-Notched Beam**
 - "Iosipescu" Shear
 - ASTM D5379

- **V-Notched Rail Shear**
 - ASTM D7078

- **Combined Loading Shear**
Iosipescu (V-Notched Beam) Shear Test: ASTM D5379

- 76 mm long x 19 mm wide specimen
- Opposing 90° machined V-notchess
- Asymmetrical four-point flexure loading
- In-plane and interlaminar shear testing
V-Notched Rail Shear Test: ASTM D7078

- Standardized in 2005 by ASTM
- 76 mm x 56 mm notched specimen
- Same notch configuration as Iosipescu specimen
- Increased gage section (compared to Iosipescu)
- Face-loading allows testing of higher shear strength laminates
Combined Loading Shear Test
(In Process of ASTM Standardization)

- Retains face loading of current D7078 V-notched rail shear test
- Introduce edge loading similar to D5379 Iosipescu shear test
- Specimen length increased to 127 mm
- Allow shear testing of thicker, higher shear strength composite laminates
Shear Stress Distribution in Test Section Area:

V-Notched Shear Tests

Results from finite element simulation, AS4/3501-6 carbon/epoxy
Comparison of Loading Capabilities: V-Notched Rail Shear Tests

Shear load capability increased significantly using Combined Loading Shear (CLS) test method

<table>
<thead>
<tr>
<th>Ave. Max Load (lb)</th>
<th>[0/90]s</th>
<th>[0/90]2s</th>
<th>[0/90]3s</th>
<th>[0/90]4s</th>
<th>[0/±45/90]s</th>
<th>[0/±45/90]2s</th>
<th>[0/±45/90]3s</th>
<th>[0/±45/90]4s</th>
<th>[±45/0]3s</th>
<th>[±45/0]4s</th>
<th>[±45/0]5s</th>
</tr>
</thead>
<tbody>
<tr>
<td>D7078</td>
<td>0</td>
<td>22</td>
<td>44</td>
<td>66</td>
<td>88</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>CLS, 3 in. (67 mm)</td>
<td></td>
</tr>
<tr>
<td>CLS, 5 in. (127 mm)</td>
<td></td>
</tr>
</tbody>
</table>

~100 kN
Shear Failure of Quasi-Isotropic Combined Loading Shear (CLS) Test Specimen

IM7/8552 carbon/epoxy, ~10 mm specimen thickness