Cavitation on a thermoplastic matrix for a UD composite subject to transverse compression (Brazilian test)

L. Laiarinandrasana
lucien.laiarinandrasana@minesparis.psl.eu

Centre for Material Sciences
Mines Paris, PSL University
UMR CNRS 7633, France
PA6GF70 pultruded composite

- Variability in local GF content
- Variability in GF diameter
- Two populations of void
Morphology, size and distribution of initial macropores

H.A. Cayzac, PhD Thesis PSL University
Mines ParisTech (2014)
Morphology, size and distribution of initial macropores

H.A. Cayzac, PhD Thesis PSL University
Mines ParisTech (2014)
Morphology, size and distribution of initial macropores

H.A. Cayzac, PhD Thesis PSL University
Mines ParisTech (2014)
Morphology, size and distribution of initial macropores

H.A. Cayzac, PhD Thesis PSL University
Mines ParisTech (2014)
Morphology, size and distribution of initial macropores

H.A. Cayzac, PhD Thesis PSL University
Mines ParisTech (2014)
Morphology, size and distribution of initial macropores

H.A. Cayzac, PhD Thesis PSL University
Mines ParisTech (2014)
Morphology, size and distribution of initial macropores

H.A. Cayzac, PhD Thesis PSL University
Mines ParisTech (2014)
Morphology, size and distribution of initial macropores

H.A. Cayzac, PhD Thesis PSL University
Mines ParisTech (2014)
Morphology, size and distribution of initial macropores

H.A. Cayzac, PhD Thesis PSL University
Mines ParisTech (2014)
Morphology, size and distribution of initial macropores

H.A. Cayzac, PhD Thesis PSL University
Mines ParisTech (2014)
Morphology, size and distribution of initial macropores

H.A. Cayzac, PhD Thesis PSL University
Mines ParisTech (2014)
Brazilian tests on a rod

"Brittle" failure by transverse compression
Voiding in the matrix: measurement and modelling

Void (blue dots) = Damage

Nucleation/Growth/Coalescence

(a) $\frac{\Delta \varepsilon}{\varepsilon_0} = 0.56\varepsilon_R$

(b) $\frac{\Delta \varepsilon}{\varepsilon_0} = 0.94\varepsilon_R$

Poulet et al., *Polymer Testing* (2016)
μCT and FE simulation of the Brazilian test

Graph:

- $\sigma/\sigma_{\text{sat}}$ vs $\Delta \psi/\psi_0$
- ϕ_0 vs crack length/diameter

Images:
- Macroscopic
- μCT resolution 1px = 5 μm
µCT and FE simulation of the Brazilian test

$\sigma / \sigma_{\text{rupt}}$

$\tau_{\text{th}} / \tau_{\text{th,0}}$

$\tau_{\text{th}} / \tau_{\text{th,0}}$

μ / μ_{0}

ϕ / ϕ_{0}

$a / \phi_{\text{0}} \rightarrow \text{crack length/diameter}$

Macroscopic

μCT resolution 1px = 5µm
μCT and FE simulation of the Brazilian test

\[\frac{\sigma}{\sigma_{\text{max}}} \leftrightarrow \frac{a}{a_{\text{max}}} \]

Macroscale 1

\[\Phi \text{ at } a_{0} \]

EF \\sigma_{\text{max}}

EF \\Phi_{a0}

\[\mu \text{CT resolution 1px} = 5 \text{µm} \]
μCT and FE simulation of the Brazilian test

\[\frac{a}{\phi_0} \rightarrow \text{crack length / diameter} \]

Macro $\frac{a}{\phi_0}$
Tomo $\frac{a}{\phi_0}$
FF $\frac{a}{\phi_0}$
EF $\frac{a}{\phi_0}$

μCT resolution 1px = 5μm

Mid-height through the thickness