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Abstract

We explore the exchange field dependence of the Hubbard model with a attractive,

effective, pairwise, nearest neighbour interaction via the Hartree–Fock–Gorkov approximation.

We derive a Ginzburg–Landau theory of spin triplet superconductivity in an exchange field. For

microscopic parameters which lead to ABM phase superconductivity in zero field, the

Ginzburg–Landau theory allows both an axial (A, A1 or A2) solution with the vector order

parameter, d(k), perpendicular to the field, H, and an A phase solution with d(k) parallel to H.

We study the spin-generalised Bogoliubov–de Gennes (BdG) equations for this model with

parameters suitable for strontium ruthenate (Sr2RuO4). The A2 phase is found to be stable in a

magnetic field. However, in the real material, spin-orbit coupling could pin the order parameter to

the crystallographic c-axis which would favour the A phase for fields parallel to the c-axis. We

show that the low temperature thermodynamic behaviour in a magnetic field could

experimentally differentiate between these two possible behaviours. Further we show that this

pinning could cause a Freedericksz (Frederiks) transition in bulk Sr2RuO4. (Freedericksz

transitions have only previously been seen in confined geometries.)

We calculate the superconducting critical temperature, TC , of ZrZn2 in the presence of

non-magnetic impurity scattering from the Abrikosov–Gorkov formula. Residual resistivity

experiments indicate that the transition temperature in the absence of impurity scattering,

TC0 = 1.15 ± 0.15 K, while de Haas–van Alphen experiments give TC0 ∼ 3 K. We discuss this

disagreement and conclude that the former estimate is the more reliable.

We derive the equal spin pairing (ESP) gap equations for a ferromagnetic superconductor,

which we solve for parameters chosen for ZrZn2. We show that for ESP states in a ferromagnetic

superconductor, in the absence of spin flip processes, the two spin states are separate subsystems

due to exchange splitting. This unique property of a ferromagnetic superconductor allows us to

calculate not only TC , but also the temperature of the transition from the A1 phase to the A2

phase from the linearised gap equations. We account for scattering from non-magnetic

impurities. Our results show that the observed pressure dependence of TC in ZrZn2 is consistent

with ESP superconductivity mediated by a pressure independent potential in the presence of

impurity scattering.
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Chapter 1

Introduction

Superconductivity and magnetism are often thought of as antagonistic phenomena. If one

places a superconductor in a large enough magnetic field then it will stop superconducting. (The

strength of magnetic field required to completely eradicate superconductivity is known as the

(upper) critical field.) If one places a superconductor above a magnet that produces a field

smaller than the critical field then the superconductor will levitate above the magnet (see figure

1.1). In fact this effect is so strong that it has even been used to levitate a Sumo wrestler (see

figure 1.2). The superconductor levitates because it will not allow the magnetic field to penetrate

into its interior, a phenomena known as the Meissner effect, so to avoid the field it must move

away from the magnet.

This traditional view of antagonism between superconductivity and magnetism has come

under threat recently. First superconductors with enormous upper critical fields were discovered.

These include the so called heavy fermion compounds UPt3 [185] and UNi2Al3 [101], the

Figure 1.1: A magnet levitating over a superconductor from reference [173].

1
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Figure 1.2: A sumo wrestler stood on a piece of magnetic material levitated over a superconductor,

taken from the Asian Technology Information Program (ATIP) website [20].
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Bechgaard salts ((TMTSF)2X where X = PF6 [49, 121], ClO4 [122]) and Sr2RuO4 (strontium

ruthenate or ‘struthenate’ to its friends) [137]. We study the latter in chapter 5 of this thesis. But

recently three even more remarkable materials have been discovered which are (ferro)magnetic

and superconducting at the same time. Even more surprisingly it appears that the same electrons

are responsible for both the superconductivity and the ferromagnetism. These materials are UGe2

[98], URhGe [15] and ZrZn2 [166] the last of which we will study in chapter 6 of this thesis.

1.1 A brief history of superconductivity

The beginning of the twentieth century saw a revolution in theoretical physics. The new

physics, and in particular quantum mechanics, met with success after success, it explained the

ultraviolet catastrophe, the photoelectric effect, the Compton effect, the structure of the atom (and

hence physical chemistry) and even made the prediction of antimatter. ‘This advance on all fronts

was stopped by the two phenomena of superfluidity of helium and superconductivity of metals

which stood like cites under siege resisting qualitative explanation.’1

The phenomena of superconductivity was discovered in 1911 by Kammerlingh Onnes who

observed an enormous drop in the d.c. resistance of mercury at 4.2 K. It soon emerged that the

resistance of a superconductor (as this new state of matter was named) does not merely become

much smaller, it actually vanishes. Superfluidity is just as strange as superconductivity, the

viscosity of helium completely disappears at 2.17 K. The superfluid exhibits remarkable effects

like the ability to flow through tiny holes and the so called fountain effect where superfluid

helium will actually climb out of a beaker!

One important result from elementary quantum mechanics is the particles have an intrinsic

angular momentum which is known as the spin of a particle. (Although this intrinsic angular

momentum is not related to the particles rotating on their axes as even point particles have this

spin.) In units of ~ (Planks constant divided by 2π, the fundamental unit of quantum mechanics)

this spin must either be an integer (0,1,2,...) or half-integer ( 1
2 , 3

2 , 5
2 ,...). The distinction between

particles with integer spin and those with half-integer spin is extremely important in the quantum

world (although this distinction is lost as the energy of the particles is increased and we return to

the classical world). Particles with integer spin obey Bose–Einstein statistics and are known as

Bosons. While particles with a half-integer spin obey Fermi–Dirac statistics and are called

1This quotation is taken from Richard Feynman [73] writing in the conference proceedings of the 1958 Kammerlingh

Onnes conference.
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Fermions. This distinction is far from academic: Fermions obey the Pauli exclusion principle

(only one Fermion is allowed in each state) while Bosons do not (many Bosons are allowed in

any given state).

Examples of Bosons are the quantised particles of light (photons) and sound (phonons)

(both of these particles have spin 1). Examples of Fermions are electrons, protons and neutrons

(all three of these particles have spin 1
2 ). However, composite particles are also separated into

Bosons and Fermions. For example helium, the second lightest element has two isotopes 3He and
4He. 3He is made up of seven Fermions (2 protons, 1 neutron and 2 electrons) and so has total

spin 7
2 , thus 3He is a Fermion. On the other hand 4He is made up of eight Fermions (2 protons, 2

neutrons and 2 electrons) and has total spin 4, therefore 4He is a Boson. This leads to very

different behaviours in the two isotopes at low temperatures. This is an excellent example of how

materials physics gives us a window on the quantum world, the wide range of materials in nature

providing a seemingly infinite variety of quantum behaviours.

The last paragraph begs the question “why at low temperatures?” In fact, this question

could be asked of this entire thesis. Temperature is a measure of the average kinetic energy of a

system of a large number of particles. Therefore, high temperatures mean that quantum

mechanical effects are lost and we return to our usual, classical world. But at low temperatures

quantum mechanical behaviour returns, thus if we want to study many body quantum mechanics

we must look to low temperatures. To quote Feynman [73] again ‘low temperatures exhibit the

strange quantum mechanical effects because of the very small number of states excited. So that

low temperature physics will continue to be a technique for exhibiting the interesting

consequences of quantum mechanics on large scale systems.’

At high temperatures (like room temperature) thermal energy means that Bosons choose

their state more or less at random. Albert Einstein showed [61] that as Bosons do not obey the

Pauli exclusion principle a system of Bosons cooled towards absolute zero will all congregate in

the lowest energy state. This process is known as Bose-Einstein condensation.

Superfluidity of helium is closely related to Bose–Einstein condensation. Although

interactions play a very important role in the superfluidity of helium where as the theory of

Bose–Einstein condensation is based on non interacting particles, this leads to some important

effects. This idea was lent further support by the fact that superfluidity was observed in 4He and

not 3He. (Superfluidity in 3He was eventually discovered in the 1970s and finds its explanation in

the BCS theory.)

The first real progress in understanding superconductivity came when Ogg [161] suggested
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that there may be a link between superconductivity and Bose–Einstein condensation. This would

require that the electrons formed pairs, which could be shown to explain the Meissner effect (as

Schafroth [188, 189] had already shown that a charged superfluid would display the Meissner

effect), but pairs of electrons appeared impossible because of the repulsion of electrons due to the

Coulomb force. Eventually a phenomenological theory was proposed by Ginzburg and Landau

[79] working in the U.S.S.R. but, at the height of the cold war, western scientists remained

unaware of this development. This ignorance only serves to heighten achievements of Bardeen,

Cooper and Schrieffer (BCS) who constructed a microscopic theory which explained the

phenomena of superconductivity and superfluidity in 3He. As well as explaining many

experimental facts BCS theory can also be used to derive the Ginzburg–Landau theory.

1.1.1 BCS theory

The road to a full microscopic theory of superconductivity began when Leon Cooper

considered the problem (now known as the Cooper problem) of two electrons (or more strictly

two of the quasiparticles in Landaus theory from Fermi liquids) interacting above a filled Fermi

sea. He showed that, in the presence of an arbitrarily weak attractive interaction between the two

quasiparticles, the quasiparticles form a bound state [52] known as a Cooper pair.

This bound state is reminiscent of the suggestion that superconductivity is related to

Bose–Einstein condensation. Indeed BCS [25] were able to derive a mean-field theory of the full

many body state (as opposed to the effectively two body Cooper problem). In this theory every

electron is effectively paired with every other electron rather than one specific electron, so in this

sense the idea of a Cooper pair is somewhat misleading as it can lead to thoughts of diatomic (or

perhaps ‘dielectronic’) molecules, which are not the case. Further, the coherence length (the

effective radius of a Cooper pair in BCS theory) is very large, which explains how the Coulomb

force is overcome. However, the integer spin of the paired electronic states is enough to allow

them to form a condensate, which is not entirely dissimilar to a Bose–Einstein condensate.

BCS theory contains an effective potential, so the question remained of what provided the

attractive potential to cause the formation of Cooper pairs or, put another way, what is the pairing

mechanism? Frölich [74] had already shown that phonons could lead to a weak attraction

between electrons, and indeed in BCS theory the attractive potential is cut off at the Debye

frequency which is clearly an implication that phonons are involved. Eliashberg was able to

derive a full treatment of the pairing interaction [62, 63] and show that phonons do indeed

provide the glue which binds a Cooper pair together (at least in a conventional superconductor).
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It was found that as the strength of the coupling interaction in Eliashberg theory tends to zero

BCS theory is recovered. BCS theory is therefore often referred to as the weak coupling limit.

In the original version of BCS theory there is no angular momentum between the

quasiparticles, further Cooper pairs are spin 0 objects. However, it was found that in 3He the

Cooper pairs have an orbital angular momentum and spin 1. Spin 0 objects have only one

projection (Sz = 0), spin 1 objects have three projections (Sz = −1, 0 or 1). Superconductivity

with spin 0 Cooper pairs is therefore called singlet superconductivity and superconductivity with

spin 1 Cooper pairs is called triplet superconductivity.

As we will see throughout this thesis much attention has been focused on non-phononic

pairing mechanisms which can give various forms of unconventional pairing. The best

understood example of non-phononic pairing is 3He which we will explore in chapter 3. However

there has also been much attention focused on spin fluctuation pairing mechanisms particularly in

Sr2RuO4 and ZrZn2.

In this thesis however we will not focus mechanism of superconductivity. Instead we

employ an effective interaction and a generalised form of BCS theory to study some of the

fascinating phenomenology found in triplet superconductors. We focus in particular on the

strange effects of magnetic fields and ferromagnetism on triplet superconductivity.

1.2 A brief outline of this thesis

Before we can study the complex phenomena observed in Sr2RuO4 in an external

magnetic field and ZrZn2 because of its own (internal) magnetic field, we must understand a great

deal of previous work. To this end we review some of the basics of many-body theory in chapter

2. In particular we introduce the basic notions of the many body problem, the tight binding

model, second quantisation and Green’s functions.

We introduce the phenomena of superconductivity in general and triplet superconductivity

in particular by discussing superfluid 3He in chapter 3. We begin by introducing the

Ginzburg–Landau and BCS theories for conventional superconductors. We then compare and

contrast the nature of singlet and triplet states in both two body and many body quantum

mechanics. We then generalise BCS to finite angular momentum states and either spin singlet or

spin triplet pairing. We are now in a position to discuss superfluidity in 3He. This discussion

includes theoretical (Ginzburg–Landau) and experimental descriptions of the triplet phases

observed in superfluid 3He (especially those observed in a magnetic field). We also discuss
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phases which have been found (theoretically) to be stable in other regions of phase space.

Chapter 4 sees the introduction of the Hubbard model, which we explore by considering

the phenomena of ferromagnetism. We then use an extended Hubbard model to derive a BCS like

theory which is valid for either singlet or triplet superconductivity in the presence of a magnetic

field. We explore the analytic properties of both the singlet and triplet solutions, in addition we

study the singlet solution numerically. Some unexpected consequences are found highlights

include a p-wave state with a Clogston–Chandrasekhar limit and the discovery that some triplet

and all singlet states are unaffected by the application of a spin-only magnetic field at zero

temperature.

In chapter 5 we study the triplet solutions of our model in two dimensions: these results

are applied to strontium ruthenate. Our study begins with a review of other work of Sr2RuO4, we

then derive a Ginzburg–Landau theory from our microscopic Hamiltonian. The results of our

Ginzburg–Landau theory are compared with numerical solutions of the microscopic Hamiltonian

in the (mean field) Hartree–Fock–Gorkov approximation. We find two solutions with very

different thermodynamic properties. We speculate that the higher energy solution may be

observed in Sr2RuO4 when an external magnetic field is aligned with the c-axis and that this may

lead to a Freedericksz transition in Sr2RuO4.

In chapter 6 we study our model in three dimensions, applying our results to ZrZn2. We

begin by studying the work of others on this system. We then calculate the critical temperature of

ZrZn2 on the basis of residual resistivity and de Haas–van Alphen experiments. We derive the

equal spin pairing gap equations for a ferromagnetic superconductor. These show that, for equal

spin pairing states in the absence of spin flip processes, the two spin states are separate

subsystems in a ferromagnetic superconductor due to exchange splitting. This allows the

calculation of the critical temperature for each spin state from a linearised gap equation. The

higher of these transition temperatures is the global TC , while, remarkably, the linearised

equation giving the lower transition temperature remains valid and predicts the temperature of a

transition from one superconducting phase to another. We then introduce a new model for

superconductivity in ZrZn2 in which the attractive, effective pairing interaction is independent of

pressure. We show that this leads to a theory in qualitative agreement with current experimental

results and make potentially falsifiable predictions from our model.

We draw our conclusions from this work in chapter 7 and then suggest some directions for

further work.
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Chapter 2

Some mathematical and physical

preliminaries

In this chapter we introduce a number of concepts which are required to understand the

following chapters. This chapter can either be read as a coherent whole, or ‘dipped’ into as is

desired. To facilitate this, as far as is possible, each section is self-contained. Of course, all of the

topics have been covered in far more detail elsewhere. References to some of the many excellent

textbooks on the subjects covered here are therefore given.

We begin this chapter by describing the nature of the many body problem. To study this we

introduce the tight binding model. As an example a tight binding fit for Sr2RuO4 is presented in

section 2.2.1. This fit is used as the basis for calculations which are presented in chapter 5. We

examine the second quantisation technique and derive the tight binding Hamiltonian from a

second quantisation Hamiltonian to demonstrate the power of the method. We then, briefly,

discuss the use of Green’s functions in many body physics.

2.1 The many body problem

The time independent Schrödinger equation (TISE) for a single particle is

Ĥψ(r) = Eψ(r). (2.1.1)

The Hamiltonian, Ĥ, is

Ĥ = T̂ + V̂ (2.1.2)

9
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where, the kinetic energy term is

T̂ = − ~
2

2m
∇2 (2.1.3)

and an external potential depends only on the position of the particle:

V̂ = V (r). (2.1.4)

For more than one particle the TISE is

ĤΨ(r1σ1, r2σ2, ..., rnσn, ...) = EΨ(r1σ1, r2σ2, ..., rnσ2, ...). (2.1.5)

Ψ(r1σ1, r2σ2, ..., rnσn, ...) is the many body wave-function. The Hamiltonian is still of the form

detailed in equation 2.1.1, but now the kinetic energy term is

T̂ = − ~
2

2m

(
∇2

1 + ∇2
2 + ...+ ∇2

n + ...
)
, (2.1.6)

and the potential energy term is a function of all of the particle coordinates

V̂ = V (r1, r2, ..., rn, ...) (2.1.7)

and in general includes interactions between the particles as well as the effect of an external

potential.

The problems of superconductivity and magnetism, aspects of which will be considered in

this thesis, are both intrinsically many body problems as the interactions between the conduction

electrons determine the ground state of the many body system. However, it is not possible, in

general, to solve the full many body TISE, so approximations must be made.

It is clearly pragmatic to ‘integrate out’ quark and nucleon degrees of freedom. In this

work we will not consider the majority of the electronic degrees of freedom either. Instead, we

will consider a system of ‘ions’ and ‘conduction’ electrons.

Landau’s theory of Fermi liquids [3] is one of the most important tools for studying the

system of conduction electrons interacting in an ionic potential. Landau’s theory is also very

important for studying 3He, the normal state of which is very well described by Landau Fermi

liquid theory. Landau showed [115, 116] that the system of interacting electrons can be mapped

onto a system of ‘quasiparticles’. The quasiparticles can either be particle-like (εk > εF ) or

hole-like (εk < εF ) excitations, but importantly quasiparticles retain the labels of the

non-interacting electron gas i.e. the momentum, k, and spin, σ, are good quantum numbers of

both the non-interacting and the interacting systems. The quasiparticles can often be thought of

as a particle surrounded by a polarisation cloud of other particles.
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2.2 The tight binding approximation

One of the simplest models of electrons in solids is the tight binding approximation. The

tight binding approximation is therefore described in many elementary textbooks (particularly

recommended are the discussions in the books by Ziman [225] and Ashcroft and Mermin [19]).

It is possible to expand the single particle eigenstates, Ψ(r), of any system as a linear sum

of any other complete set of states, ψn(r), as follows

Ψ(r) =
∑

n

anψn(r). (2.2.1)

Solids are made up of atoms, so a natural (and complete) set of states in which to expand the

eigenstates of the system is the eigenfunctions of an isolated atom - the atomic orbitals, φn(r).

Which are the eigenstates of the atomic Hamiltonian, Ĥat, i.e.

Ĥatφn(r) = Enφn(r) (2.2.2)

Of course, while the electrons retain much of the localised character of the free atom, the fact that

we are dealing with a solid changes the Hamiltonian (and hence the eigenstates) of the system.

However, we can write the perturbed Hamiltonian as

Ĥ = Ĥat + V(r − Ri). (2.2.3)

The Ri = i× a (where a is a basis vector of the crystal and i ∈ I) are the locations of the lattice

sites. V(r − Ri) is the difference between the potential felt by an electron at r − Ri in a free

atom with its nucleus at the origin and the potential felt by an electron at r in an orbital arising

from atom at the location Ri. The energy of the system, ε(k), is the given by the expectation

value of the Hamiltonian,

ε(k) =

∫
Ψ∗(r)ĤΨ(r)dr∫
Ψ∗(r)Ψ(r)dr

. (2.2.4)

If the atoms are sufficiently separated from one another then only a few occupied orbitals will

significantly overlap with one another.

Recall that Bloch’s theorem states that

Ψ(r + a) = eik·aΨ(r). (2.2.5)
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Hence, when only one orbital at each site has a significant overlap with it’s neighbours we find

that

ε(k) =
∑

i

tie
ik·Ri (2.2.6)

The coefficients, ti, are given by

ti =

∫
drφ∗(r)V(r)φ(r − Ri), (2.2.7)

and are known as hopping integrals as they correspond to the amplitude for a quasiparticle to

move from an orbital around the atom at the origin to an orbital on the atom at Ri. Hence, t0 is

an on site term, t1 describes nearest neighbour hopping, t2 describes next nearest neighbour

hopping and tn describes nth nearest neighbour hopping.

We now assume that only the first few terms in the series have no-zero coefficients. For

example, if only t0 = ε0 and t1 = −t are non-zero, then the quasiparticle dispersion relation for a

simple cubic lattice is

ε(k) = ε0 − 2t
(
cos(kxa) + cos(kya) + cos(kza)

)
(2.2.8)

where a is the lattice spacing. Thus by carefully choosing a complete set of states we have been

able to write down a simple approximation for the dispersion relation of a cubic lattice. If more

than one orbital has a significant overlap with it’s neighbours then the effect is simply to

introduce more hopping integrals. Higher order hopping terms can be included to give the

approximation greater accuracy.

2.2.1 Example: A tight binding fit to the band structure of Sr2RuO4 as

determined by quantum oscillations.

By way of an illustration of what has been described above, we will now examine an

application of the tight binding approximation. We will show how tight binding parameters can

be fitted to experimental data obtained from de Haas–van Alphen measurements [30].

As will be examined in greater detail in chapter 5, Sr2RuO4 is a quasi two dimensional

metal with a perovskite crystal structure (see figure 5.1). Both first principles band structure

calculations [147] and experiment [30, 130, 220] indicate that there are three Fermi surface

sheets. These arise from the overlap of the Ru-dxy, -dxz and -dyz orbitals, one can therefore fit

the experimental parameters with a tight binding model. This means that each order we expand to
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Figure 2.1: Sketch of the hopping integrals in equations 2.2.10, 2.2.11 and 2.2.12 and the symme-

try of the relevant orbitals.

will give us nine hopping integrals. Therefore to second order we have twenty seven free

parameters.

Twenty seven free parameters make this model a gross over-specification. Therefore we

must introduce some reasonable approximations. To do this we consider the two dimensional

(2D) nature of the Ru-d orbitals of which of which the bands are composed.

As both band structure and experiments indicate that Sr2RuO4 is highly 2D, that is to say

that, to the first approximation, the Fermi surface is independent of the z coordinate1. We will

limit our fit to the basal plane in which, the dxz and dyz orbitals are one dimensional.

Our model can be further simplified as the band structure calculations indicate that there is

little hybridisation between the dxy orbital and the two 1D orbitals. We will therefore fit the dxy

orbital separately from the 1D bands. To second order the tight binding model for a 2D band is

εγ(k) = εc − 2t(cos kx + cos ky) − t′ cos kx cos ky, (2.2.9)

in units where the lattice spacing equals one.

The two 1D bands are slightly more complex as there is significant hybridisation between

them. We will therefore fit these orbitals to the functions εα, εβ and εαβ where

εα(k) = εa − 2tax cos kx − 2tay cos ky, (2.2.10)

εβ(k) = εb − 2tax cos kx − 2tay cos ky, (2.2.11)

εαβ(k) = −4tab sin kx sin ky. (2.2.12)

1The ‘warping’ of the Fermi in the third direction (along the c-axis) has also been studied [30] by de Haas-van

Alphen experiments and was found to be minimal.
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Figure 2.2: The experimental Fermi surface of Sr2RuO4 taken from Mackenzie et al. [136].

Figure 2.1 shows the nature of hopping integrals and the orbitals which they represent hopping

between. For example, tax describes hopping between a (dxz) orbitals in the x-direction. tab

corresponds to hopping between the a and b (dyz) orbitals. Because of x− y symmetry

εa = εb (2.2.13)

tax = tby (2.2.14)

tbx = tay. (2.2.15)

We are now left with only seven free parameters. Three parameters for the dxy orbital2 and

four parameters for the hybridised dxz/dyz system.

Experimentally [30] it is found that there are three bands, canonically3 labelled α, β and γ

(see figure 2.2). Mazin and Singh associate the α and β sheets with the bands arising from the

hybridisation of the dxz and dyz orbitals and the γ sheet with the dxy orbital. We therefore

assume this in our fit.

For each band we have two experimentally measured parameters, the cyclotron mass, m,

and the angularly averaged Fermi wavevector, kF . These are detailed in table 2.1. However, for

the theorist the fundamental parameter is the area enclosed by the Fermi surface, A, as this is

simple to calculate numerically from the tight binding approximation and encapsulates both the

2We should note that this is still a slight over-specification as for the γ sheet we will fit three free parameters to only

two measured quantities, however this is far more justifiable than our original twenty seven free parameters.
3Confusingly some early works do not follow this convention, in particular Mazin and Singh [147] use αc = βMS ,

βc = αMS , γc = γMS , where the subscript c corresponds to the canonical labels (which we will use throughout this

thesis) and the subscript MS corresponds to Mazin and Singh’s labels.
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Sheet α β γ

kF (Å) 0.305 0.623 0.754

m/me 3.4 7.5 14.6

Table 2.1: Experimental parameters from Mackenzie et al. [135] used to determine the tight

binding fit for Sr2RuO4.

t 0.08162 eV

t′ 0.45t

εc -1.615t

tax = tby 1.34t

tay = tbx 0.08t

tab 0.11t

εa = εb -1.42t

Table 2.2: Tight binding parameters fitted to de Haas-van Alphen experiments performed on

Sr2RuO4.

measured quantities as

πk2
F = A (2.2.16)

and

m =
~

2

2π

∂A

∂ε
. (2.2.17)

Based on the experimental data a fit, detailed in table 2.2, was constructed. The cyclotron

masses and Fermi wavevectors calculated from this fit are shown in table 2.3 and are in excellent

agreement with the experimental parameters, while the Fermi surface for this model is shown in

figure 2.3 this compares favourably with the experimentally measured Fermi surface (figure 2.2).

Sheet α β γ

kF (Å) 0.305 0.623 0.754

m/me 3.368 7.560 14.60

Table 2.3: Tight binding cyclotron masses and Fermi wavevectors c.f. table 2.1.
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Figure 2.3: The Fermi surface of Sr2RuO4 calculated from a tight binding fit.
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Figure 2.4: The Fermi surface of a tight binding model with on-site, nearest neighbour and next

nearest neighbour terms for various values of the hopping integrals. The parameters are as follows:

(a) t0/t1 = −1.615, t2/t1 = 0.45 (b) t0/t1 = −1.077, t2/t1 = 0.30 (c) t0/t1 = −0.538,

t2/t1 = 0.15 (d) t0/t1 = 0, t2/t1 = 0.

To show a little more of the possible range of the tight binding approximation, we briefly

examine a model of the dxy orbital/γ band of Sr4RuO4. In figures 2.4 and 2.5 we plot the Fermi

surface of the tight binding model corresponding to equation 2.2.9 with various choices of the

parameters εc and t′. And in figure 2.6 we show the well know Fermi surfaces of the nearest

neighbour Hubbard model in two dimensions at various fillings.

2.2.2 The tight binding density of states

Another important feature of the electronic structure in the density of states (DOS). For

practical purposes (when working close to experiment) we often only require that the DOS is

correct near the Fermi level. For example, in our tight binding fit (above) we ensured that the

gradient of the DOS at the Fermi energy was correct my fitting to cyclotron mass.

We have numerically calculated the DOS, D(ε), for our tight binding models by two

methods. (i) Direct evaluation of the formula

D(ε) =
∑

k

δ(ε− εk), (2.2.18)
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Figure 2.5: The Fermi surface of a tight binding model with on-site, nearest neighbour and next

nearest neighbour terms for various fillings. The parameters are as follows: (a) t0/t1 = −1.615,

t2/t1 = 0.45 (b) t0/t1 = −1.5, t2/t1 = 0.45 (c) t0/t1 = −1.0, t2/t1 = 0.45 (d) t0/t1 = −0.5,

t2/t1 = 0.45 (e) t0/t1 = 0.0, t2/t1 = 0.45.

Figure 2.6: The Fermi surface of a tight binding model with nearest neighbour hopping only

for various fillings. The chemical potential is (from the centre out): t0/t1 = −3, t0/t1 = −2,

t0/t1 = −1, t0/t1 = 0, t0/t1 = 1, t0/t1 = 2 and t0/t1 = 3.
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Figure 2.7: The density of states for a tight binding model with nearest neighbour hopping only in

two dimensions, calculated both by direct evaluation of equation 2.2.18 and by the Bessel function

method.

(which requires certain subtleties discussed in appendix A.2) and (ii) by expanding the solution in

terms of Bessel functions as discussed in appendix A.1. These two calculations are in good

agreement. The well known DOS for a nearest neighbour, tight binding model (i.e. for the

Hamiltonian given in equation 2.2.8) is shown in figure 2.7. Particular features to notice are that

the bandwidth is 8t (as can clearly be seen from equation 2.2.8) and that there is a van Hove

singularity at half filling (one electron per cite, E/t = 0).

Also shown are the DOS for the tight binding fit to the γ band of Sr2RuO4 (figure 2.8) and

the full three orbital fit to Sr2RuO4 (figure 2.9). Note that the next nearest neighbour terms break

the symmetry about half filling. The γ band has two van Hove singularities, both above the Fermi

energy, while the van Hove singularities on the α and β bands are shifted to very high and very

low energies respectively because of their one dimensionality. Both the α and β bands are

relatively smooth at the Fermi level, the gradient of the DOS at the Fermi level is therefore

dominated by the γ band. This indicates that the γ band will play a leading role in determining

the physics of Sr2RuO4.
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Figure 2.8: The density of states for the tight binding fit to the γ sheet of Sr2RuO4, calculated by

direct evaluation of equation 2.2.18. Inset, detail of region near the Fermi level and the van Hove

singularities.
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Figure 2.9: The density of states for the tight binding fit to the three band model Sr2RuO4, cal-

culated by direct evaluation of equation 2.2.18. Inset, density of states of the α and β bands

calculated by the same method.
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2.3 Second quantisation

We now consider a mathematical technique that is central to this thesis, namely that of

second quantisation. Second quantisation is in fact, the basic building block of all quantum field

theories, and as such is one of the most important tools in the theoretical physicists armoury.

Consider the wavefunction, |Ψ〉, of a many body system. In the occupation number

representation |Ψ〉 has the generic form

|Ψ〉 = |..., nλ−1, nλ, nλ+1, ...〉. (2.3.1)

We now introduce two operators, ĉλ and ĉ†λ, which we define to have the following effects of |Ψ〉

ĉ†λ|Ψ〉 = ĉ†λ|..., nλ..., 〉 = (±1)(
∑λ′<λ

λ′ nλ′ )(1 − nλ)
1
2 |..., (nλ + 1), ...〉, (2.3.2)

ĉλ|Ψ〉 = ĉλ|..., nλ, ...〉 = (±1)(
∑λ′<λ

λ′ nλ′ )(nλ)
1
2 |..., (nλ − 1), ...〉, (2.3.3)

where the + corresponds to Bosons and the − corresponds to Fermions. Thus ĉ†λ increases the

number of particles, nλ, in the state λ by one. ĉ†λ is therefore known as a creation operator.

Similarly, ĉλ decreases nλ by one and is therefore known as an annihilation operator. To fully

specify the operators we must also specify their commutation relations. For Fermions the

commutation relations are:

ĉλĉ
†
λ′ + ĉ†λ′ ĉλ = δλλ′ (2.3.4)

ĉ†λ′ ĉ
†
λ + ĉ†λĉ

†
λ′ = 0 (2.3.5)

ĉλ′ ĉλ + ĉλĉλ′ = 0. (2.3.6)

While the Bosons commutation relations are:

ĉλĉ
†
λ′ − ĉ†λ′ ĉλ = δλλ′ (2.3.7)

ĉ†λ′ ĉ
†
λ − ĉ†λĉ

†
λ′ = 0 (2.3.8)

ĉλ′ ĉλ − ĉλĉλ′ = 0. (2.3.9)

We now define the field operators, ψ̂†
σ(r) and ψ̂σ(r), by
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ψ̂†
σ(r) =

∑

λ

ĉ†λφ
∗
λ(r) (2.3.10)

ψ̂σ(r) =
∑

λ

ĉλφλ(r) (2.3.11)

where φλ(r) is the wavefunction of a particle in the state λ at the position r. ψ̂†
σ(r) therefore

creates a particle with spin σ at position r and ψ̂σ(r) annihilates a particle with spin σ at position

r.

We can use the field operators to define composite operators. For example the density

operator:

ρ̂σ(r) = mψ̂†
σ(r)ψ̂σ(r) (2.3.12)

the expectation value of which is the density:

ρσ(r) = m
〈
ψ0

∣∣ψ̂†
σ(r)ψ̂σ(r)

∣∣ψ0

〉
(2.3.13)

or the (particle) current operator:

ĵσ(r) = ψ̂†
σ(r)

~

im
∇ψ̂σ(r) + h.c., (2.3.14)

where h.c. indicates the Hermitian conjugate, the expectation value of which is the (particle)

current :

jσ(r) =
〈
ψ0

∣∣∣ψ̂†
σ(r)

~

im
∇ψ̂σ(r) + h.c.

∣∣∣ψ0

〉
. (2.3.15)

As the Hamiltonian is an operator we can of course write the Hamiltonian in terms of the

field operators. For example the single particle Hamiltonian, Ĥ0, is given by

Ĥ0 =
∑

σ

∫
drψ̂†

σ(r)

(
− ~

2

2m
∇2 + V ext(r)

)
ψ̂σ(r). (2.3.16)

For two body interactions the Hamiltonian, Ĥint, is

Ĥint =
1

2

∑

σσ′

∫
dr

∫
dr′ψ̂†

σ(r)ψ̂†
σ′(r

′)V (|r − r′|)ψ̂σ′(r′)ψ̂σ(r). (2.3.17)
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2.3.1 Example: The tight binding Hamiltonian

We will now derive the tight binding Hamiltonian from equation 2.3.16. We begin by

substituting (2.3.10) and (2.3.11) into the single particle Hamiltonian. This gives

Ĥ0 =
∑

kσ

∫
drĉ†kσφ

∗
kσ(r)

(
− ~

2

2m
∇2 + V ext(r)

)
φkσ(r)ĉkσ. (2.3.18)

where we have identified k and σ as the state labels λ. Recall that φkσ(r) is the solution of the

single particle TISE so

(
− ~

2

2m
∇2 + V ext(r)

)
φkσ(r) = εkσφkσ(r). (2.3.19)

Substituting this into (2.3.18) we find that

Ĥ0 =
∑

kσ

εkσ ĉ
†
kσ ĉkσ. (2.3.20)

We now introduce the number operator, n̂kσ, which is defined as

n̂kσ = ĉ†kσ ĉkσ. (2.3.21)

Clearly, the number operator simply counts4 the number of particles in the state |k, σ〉. The

single particle Hamiltonian then becomes

Ĥ0 =
∑

kσ

εkσn̂kσ. (2.3.22)

Thus the energy of the non-interacting system is given by the product of the energy of a given

state and the number of particles in the that state summed over all states.

We now introduce the (lattice) Fourier transformations of the second quantisation

operators.

ĉiσ =
1√
N

∑

k

eik·Ri ĉkσ (2.3.23)

ĉ†iσ =
1√
N

∑

k

e−ik·Ri ĉ†kσ (2.3.24)

4This is easily seen, ĉ†kσ ĉkσ|0〉 = 0 = 0.|0〉 as the annihilation operator acting on the vacuum state gives 0, while

ĉ†kσ ĉkσ|1〉 = ĉ†kσ|0〉 = |1〉 = 1.|1〉.
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for a lattice with N sites. ĉ(†)iσ annihilates (creates) a particle in an orbital centred on the lattice

site i. Substituting the inverse Fourier transforms into equation 2.3.20 we find that

Ĥ0 =
∑

ijσ

tij ĉ
†
iσ ĉjσ (2.3.25)

where the hopping integral, tij , must clearly be the Fourier transform of the state energy, εkσ.

Thus

εkσ =
∑

j

tije
ik·(Ri−Rj). (2.3.26)

If we assume a simple cubic lattice with on site and nearest neighbour5 hopping only, we find that

εkσ = t0 + 2t1
(
cos(kxa) + cos(kya) + cos(kza)

)
(2.3.27)

and we have therefore regained (2.2.8) as required.

2.4 Green’s functions

Only a brief use of Green’s functions is made in this work. But due to their great

importance in many areas of physics, and because some readers may not be familiar with the

generalised form of the Green’s function (as opposed to the Green’s as used in the theory of

linear differential equations6) a brief discussion will be given below. For a more detailed

discussion see one of the many excellent textbooks on the subject [3, 72].

To describe the Green’s function at finite temperature we must introduce two new

concepts. The first of these is imaginary time, τ = it. Secondly we introduce the ‘Heisenberg’

field operators, ψ̃α(r, τ) and ψ̃α(r, τ), which depend on the ‘time’ τ , and are defined by

ψ̃α(r, τ) = e(Ĥ−µN̂)τψα(r)e−(Ĥ−µN̂)τ , (2.4.1)

ψ̃α(r, τ) = e(Ĥ−µN̂)τψ†
α(r)e−(Ĥ−µN̂)τ . (2.4.2)

In units where ~ = 1.
5Of course the simple cubic structure has six nearest neighbours, located at ±a in each of the x̂, ŷ and ẑ directions.

This leads to the three cosines in the dispersion relation (2.3.27).
6The name ‘Green’s function’ is derived from the fact that the free particle ‘Green’s function’ is the appropriate

Green’s function of the linear equations for ψ(r, t).
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The finite temperature (single particle) Green’s function Gαβ(r1, τ1; r2, τ2) is then defined

by

Gαβ(r1, τ1; r2, τ2) = −
〈
Tτ

(
ψ̃α(r1, τ1)ψ̃α(r2, τ2)

)〉
. (2.4.3)

Tτ is the time ordering operator7 (which of course generates the appropriate sign if it commutes

the operators) i.e.

Tτ

(
ψ̃α(r, τ)ψ̃α(r, τ)

)
=





ψ̃α(r, τ)ψ̃α(r, τ) for τ1 > τ2

−ψ̃α(r, τ)ψ̃α(r, τ) for τ2 > τ1
(2.4.4)

As with the second quantisation operators (equation 2.3.21) we can easily define many

observable quantities in terms of Green’s functions, for example the number operator is given by,

n̂ =

∫
d3rGαα(r, τ ; r, τ + 0). (2.4.5)

(τ ′ = τ + 0 is standard shorthand for the limit of τ ′ = τ + τ ′′ as τ ′′ → 0 from above.)

We can Fourier transform the Green’s function into momentum space by

Gαβ(k, τ1 − τ2) =

∫
d3r Gαβ(r1, τ1; r2, τ2)e

−k·(r1−r2). (2.4.6)

The Green’s function can also be expanded as a Fourier series of τ ,

Gαβ(k, τ) = T
∑

n

e−iωnτGαβ(k, ωn), (2.4.7)

Gαβ(k, ωn) =
1

2

∫ 1/T

−1/T
dτ eiωnτGαβ(k, τ), ωn = nπT. (2.4.8)

The ωn are known as the Matsubara frequencies.

It can be shown that for Fermions only the Fourier components of ‘odd’ frequencies,

ωn = (2n+ 1)πT , are non zero, and only for Bosons only the Fourier components of ‘even’

frequencies, ωn = 2nπT , are finite. This leads to the result [3] that for Fermions

Gαβ(k, ωn) = δαβ
1

iωn − ε(k) + µ
, ωn = (2n+ 1)πT. (2.4.9)

A similar result is found for Bosons, it is therefore usual to drop the spin labels and write
7The subscript τ is included here to distinguish the time ordering operator from the temperature, T , but is often

dropped.
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G(k, ωn) =
1

iωn − ε(k) + µ
,





ωn = (2n+ 1)πT for Fermions

ωn = 2nπT for Bosons.
(2.4.10)

These results are particularly useful as they allow the calculation of Green’s functions to become

automatic. It is, in part, this automatic calculation that makes the Green’s function technique so

powerful.



28 Some mathematical and physical preliminaries



Chapter 3

The Ginzburg–Landau and BCS

theories: applications to triplet

superfluidity in 3He

In this chapter we introduce the Ginzburg–Landau and Bardeen–Cooper–Schrieffer (BCS)

theories of superconductivity are introduced in the correct form for singlet (s-wave)

superconductivity. The relationship between the triplet state of two Fermions and triplet pairing

is explored. This motivates the generalisation the BCS theory to allow for finite angular

momentum pairing states and for either spin singlet or spin triplet pairing.

We discuss the properties of 3He at some length. We consider the phase diagram of 3He,

the generalisations of Ginzburg–Landau theory that are required to describe 3He and give a

mathematical and physical description of all of the phases seen experimentally in 3He and some

phases that are not seen experimentally, but which are stable in some region of parameter space.

Once again we attempt to provide as many references as possible to the extensive literature as

possible

3.1 The Ginzburg–Landau theory of superconductivity

The Ginzburg–Landau theory of superconductivity was first developed as a

phenomenological theory [79, 108]. However, as will be seen in section 5.2, Ginzburg–Landau

theories can readily be derived from a microscopic (BCS) theory. In this section we will discuss

the Ginzburg–Landau theory for a singlet superconductor and in section 3.8 we will describe the

29
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Ginzburg–Landau theory for triplet pairing.

Ginzburg–Landau theory is the appropriate Landau theory [117, 174] for

superconductivity and as such it has much in common with any other Landau theory. In

particular, the theory characterises the emergence of superconductivity by the appearance of an

order parameter. In zero field the superconducting transition is second order, so the order

parameter goes continuously to zero at the transition temperature (TC). In a magnetic field the

superconducting transition is first order and the order parameter is a discontinuous at TC .

To construct their order parameter Ginzburg and Landau assumed the existence of some

macroscopic ‘wavefunction’, ψ. The order parameter must be |ψ|2, as wavefunctions are

intrinsically complex while the free energy is, by definition, real. As with all Landau theories the

difference in free energy between the low temperature and high temperature states is calculated

by expanding in terms of the order parameter. Thus to fourth order the free energy is

FSC − FN = α|ψ|2 + β|ψ|4, (3.1.1)

where the subscripts SC and N refer to the superconducting and normal states respectively. In

general other terms may also be included. For example, gradient terms can be introduced to

account for the cost to the free energy of spatial distortions of the order parameter. Gradient

terms also allow the effect of an external magnetic field to enter via minimal coupling, however,

it should be remembered that the charge included in the minimal coupling term is the charge of

the Cooper pair, 2e, rather than the charge of the electron. In a field we must also include the

contribution of the magnetic field to the free energy density, giving us

FSC − FN =

∫
d3r

(
α|ψ(r)|2 + β|ψ(r)|4 +

~
2

2m∗

∣∣∣∣
(
∇− i2e

~c
A(r)

)
ψ(r)

∣∣∣∣
2

+ α̃
H2(r)

8π

)
.

(3.1.2)

However, in this thesis we will not consider the effects of gradient terms or the spatial variation

of magnetic fields, and will therefore limit ourselves to generalisations of equation 3.1.1.

3.2 The BCS theory of superconductivity

We now briefly outline the microscopic theory of superconductivity due to Bardeen,

Cooper and Schrieffer (BCS). This is built on the proof by Cooper [52] that, in the presence of a

filled Fermi sea, two quasiparticles are unstable with respect to the formation of a bound state if
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there is an arbitrarily weak potential between them. The full BCS theory [25] is the solution of a

closely related many body problem in the mean field approximation. BCS theory has a number of

properties that are necessary to explain the phenomena observed in the superconducting state. In

the BCS theory the superconducting state contains both normal and superconducting

quasiparticles, all the quasiparticles which participate in superconducting are in a single quantum

state and, probably most importantly, there is an energy gap between the superconducting ground

state and the low lying excited states.

BCS considered the Hamiltonian

HBCS =
∑

kσ

εkĉ
†
kσ ĉkσ + V

∑

k

ĉ†k↑ĉ
†
−k↓ĉ−k↓ĉk↑, (3.2.1)

where V is the attractive, on site, (pairing) potential. In BCS theory the ‘anomalous averages’

〈ĉk↑ĉ−k↓〉 and 〈ĉ†k↑ĉ
†
−k↓〉, which are zero in a normal metal, become finite in the superconducting

state. It is therefore natural to define the order parameter of the superconducting state, ∆, as

∆ = V
∑

k

〈ĉk↑ĉ−k↓〉 (3.2.2)

It can be shown [108] that the gap between the superconducting ground state and the excited

states is given by 2|∆|. (We will explore some of the consequences of this gap in section 3.5.)

The BCS wavefunction is

|ΨBCS〉 =
∏

k

(
u(k) + v(k)ĉ†k↑ĉ

†
−k↓

)
|0〉 (3.2.3)

where |0〉 is the vacuum state. The quantities u(k) and v(k) must be chosen to minimise the free

energy and are not independent, but are fixed by the normalisation of the BCS wavefunction

which yields

|u(k)|2 + |v(k)|2 = 1. (3.2.4)

Note that the BCS state is not an eigenstate of the number operator. This means that in the BCS

state the number of particles, N , is not fixed. However, as a consequence of the N , θ, uncertainty

relation the phase, θ, of the order parameter is fixed. Therefore the BCS ground state

spontaneously breaks gauge symmetry. This has many interesting consequences, most notably
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the Josephson effect (which we will not discuss here, see, for example, Ketterson and Song [108]

for details).

BCS theory can also be cast in terms of Green’s functions. To do so it is necessary to

define the so called anomalous Greens’s functions, F(r1, τ1; r2, τ2) and F†(r1, τ1; r2, τ2), by

F(r1, τ1; r2, τ2) = −
〈
Tτ

(
ψ̃↑(r1, τ1)ψ̃↓(r2, τ2)

)〉
(3.2.5)

F†(r1, τ1; r2, τ2) = −
〈
Tτ

(
ψ̃↑(r1, τ1)ψ̃↓(r2, τ2)

)〉
(3.2.6)

We can derive equations equivalent to (2.4.10) for the automatic computation of the

Green’s functions in the superconducting state (we will merely state these here, for details of the

derivation see, for example, Abrikosov, Gorkov and Dzyaloshinski [3]). They are

G(k, ωn) = − iωn + ε(k) + µ

ω2
n + ε(k)2 + |∆|2 , (3.2.7)

F(k, ωn) =
∆

ω2
n + ε(k)2 + |∆|2 , (3.2.8)

Clearly as we are only considering Fermions here ωn = (2n+ 1)πT .

Once the microscopic (BCS) theory of superconductivity had been invented, Gorkov [81]

was able to derive the Ginzburg–Landau theory from BCS theory and, in the process, show that

∆ ∝ ψ. We will undertake a similar procedure in section 5.2.

Further details of BCS theory can be found in many texts, particularly notable examples

are the classics by Abrikosov, Gorkov and Dzyaloshinski [3] and de Gennes [56], while for a

more modern treatment see Ketterson and Song [108]. In chapter 4 we derive a generalised form

of BCS theory from a tight binding model due to Hubbard, conventional BCS theory is recovered

from this and some standard results are explored.

3.3 The triplet state its relation to triplet superconductivity

It is well known that the wavefunction of a two body Fermionic system is antisymmetric

under the exchange of all labels i.e.

Ψσ1σ2(r1, r2) = −Ψσ2σ1(r2, r1). (3.3.1)

By writing the wavefunction as the product of spatial and spin parts,
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Ψσ1σ2(r1, r2) = φ(r1, r2)χσ1σ2 (3.3.2)

we arrive at the conclusion that either the spatial part, φ(r1, r2), is symmetric and the spin part,

χσ1σ2 , is antisymmetric, or the spatial part is antisymmetric while to spin part is symmetric. That

is to say,

either φ(r1, r2) = φ(r2, r1) and χσ1σ2 = −χσ2σ1 , (3.3.3)

or φ(r1, r2) = −φ(r2, r1) and χσ1σ2 = χσ2σ1 . (3.3.4)

If the spatial part of the wavefunction is symmetric the spin part must be

1√
2

(| ↑↓〉 − | ↓↑〉) . (3.3.5)

For an antisymmetric spatial part of the wavefunction there are three possible spin parts:

| ↑↑〉 (3.3.6)
1√
2

(| ↑↓〉 + | ↓↑〉) (3.3.7)

| ↓↓〉. (3.3.8)

Thus wavefunctions with an antisymmetric spin part of the wavefunction are known as spin

singlet states, while states with a symmetric spin part of the wavefunction are known as spin

triplet states. This nomenclature is often generalised from the two body system to the many body

system as is appropriate to the behaviour of the many body wavefunction under the exchange of

two particles.

In the original formulation of BCS theory of superconductivity the superconducting order

parameter, ∆, is defined by (3.2.2). However, in the most general formulation of BCS theory, the

order parameter is dependent on the spin of the quasiparticles forming the Cooper pair, the

difference in their wavevectors or both. Therefore, in general one must consider a complex,

k-dependent, 2 × 2 matrix order parameter,

∆
k

=


 ∆↑↑(k) ∆↑↓(k)

∆↓↑(k) ∆↓↓(k)


 (3.3.9)
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where,

∆αβ(k) =
∑

q

V (k − q)〈ĉqαĉ−qβ〉. (3.3.10)

We can now generalise [12, 23] BCS theory to allow for pairing in a finite angular

momentum. This is most simply done by now expand the order parameter1 in terms of the

spherical harmonics, Ylm(k),

∆(k) =
∞∑

l=0

l∑

m=−l

∆l,m(k)Yl,m(k̂). (3.3.11)

It is easy to show (see, for example, chapter 1 of Mineev and Samokhin [154] for details) that

each value of the orbital angular momentum, l, corresponds to a specific eigenstate of the gap

equation2. One therefore speaks of superconductivity in a given ‘channel’, that is to say

superconductivity caused by the attraction of a particular Vl(k,k
′). By analogy with atomic

orbitals the channels are labelled s, p, d, f, g,... corresponding to l = 0, 1, 2, 3, 4, ....

It is easy to see from the symmetry of the spherical harmonics that even l superconductors

(s, d, g,...) are even under parity inversion3, these superconductors are therefore labelled singlet

superconductors by analogy with the even parity case of the two electron problem. The odd l

superconductors (p, f,...) are odd under parity and are therefore labelled triplet superconductors

by the same analogy. This also leads to a rather nice picture of the Cooper pairs. One can view

the Cooper pair as isolated two electron system, the singlet Cooper pair being in the spin state

(3.3.5), while a triplet Cooper pair can be viewed as being in a linear superposition of (3.3.6),

(3.3.7) and (3.3.8). Of course it should be remembered that the true many body wavefunction is

far more complicated than it is portrayed in the above picture, but the picture can be a powerful

aid to intuition.

Keeping in mind what we have said above we now introduce a notation due to Balian and

Werthamer [23]. We rewrite the matrix order parameter as

1Equivalently we can expand the interaction potential, rather than the order parameter

V (k − k
′) =

∞∑

l=0

Vl(k,k
′)

l∑

m=−l

Ylm(k)Y ∗
lm(k′).

For examples of this approach see [58, 213].
2The gap equation self consistently determines ∆αβ(k), as we will see in chapter 4.
3Parity inversion is the operation defined to take r to −r and hence this operation takes k to −k.
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∆
k

=
3∑

µ=0

dµ(k)σ
µ
iσ

2
(3.3.12)

where the σ
µ

are the Pauli matrices (including the 2 × 2 identity matrix, σ
0
.)

We will now prove that d0(k) transforms as a scalar under rotation, and therefore is the

order parameter for singlet superconductivity. Furthermore we will show that

d(k) ≡ (d1(k), d2(k), d3(k)) (3.3.13)

transforms as a vector under rotation, and is therefore the order parameter for triplet

superconductivity.

We begin by considering rotation about the ẑ-axis. When ∆
k

is rotated through the angle

α it becomes [207]

∆′
k

= θ̂ α∆
k
θ̂ †

α (3.3.14)

where

θ̂ α =


 e−iα/2 0

0 eiα/2


 . (3.3.15)

Hence,

∆′
k

=


 −d′1(k) + id′2(k) d0(k) + id′3(k)

−d0(k) + id′3(k) d′1(k) + id′2(k)


 (3.3.16)

where




d′1(k)

d′2(k)

d′3(k)


 =




cosα − sinα 0

sinα cosα 0

0 0 1







d1(k)

d2(k)

d3(k)


 . (3.3.17)

Similarly, the rotation of a 2 × 2 matrix through the angle β about the ŷ-axis gives

∆′
k

= θ̂ β∆
k
θ̂ †

β (3.3.18)

where
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θ̂ β =


 cos β

2 − sin β
2

sin β
2 cos β

2


 . (3.3.19)

Which gives

∆′
k

=


 −d′1(k) + id′2(k) d0(k) + id′3(k)

−d0(k) + id′3(k) d′1(k) + id′2(k)


 (3.3.20)

where




d′1(k)

d′2(k)

d′3(k)


 =




cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ







d1(k)

d2(k)

d3(k)


 . (3.3.21)

There is no need to rotate about the x̂-axis, as any rotation about the x̂-axis can be

decomposed into rotations about the ŷ and ẑ-axes. Note that in (3.3.16) and (3.3.20) d0(k) is

unchanged by the rotation. Thus d0(k) transforms as a scalar under rotation. We also note that

d′(k) as defined by (3.3.17) and (3.3.21) is simply what one would find if a vector were rotated

by the relevant angles about the relevant axes. Thus, d(k) transforms as a vector under rotation.

The exchange of the spatial labels of a two body system is, of course, equivalent to rotation by π

about any axis. Therefore a scalar is even under the exchange of spatial labels and a vector is odd

under the same operation.

To further illustrate the relation between the two particle triplet state and triplet

superconductivity we note that from 3.3.12 we have

d0(k) =
1

2

(
∆↑↓(k) − ∆↓↑(k)

)
(3.3.22)

d1(k) =
1

2

(
∆↓↓(k) − ∆↑↑(k)

)
(3.3.23)

d2(k) = −i

2

(
∆↓↓(k) + ∆↑↑(k)

)
(3.3.24)

d3(k) =
1

2

(
∆↑↓(k) + ∆↓↑(k)

)
. (3.3.25)

Comparing (3.3.22) and (3.3.25) with (3.3.5) and (3.3.7) respectively we see that d0(k) is the

analogue of the singlet state, where as d3(k) is analogous to the Sz = 0 projection of the spin

triplet state. We also note that d1(k) and d2(k) are simply linear superpositions of the two equal
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spin pairing states (3.3.6) and (3.3.8). Clearly then the singlet state is antisymmetric under

exchange of spin labels while the triplet state is symmetric.

Hence, we have shown that the order parameter of a singlet superconductor is symmetric

under parity inversion and antisymmetric under the exchange of spin labels. We have also shown

that the order parameter of a triplet superconductor is antisymmetric under parity inversion and

symmetric under the exchange of spin labels. The states behaviour is therefore the same as that of

their two body namesakes under the same operations.

3.4 Unconventional pairing and spin-generalised BCS theory

Many of the qualitative features of BCS theory are the same regardless of whether the

pairing state is singlet or triplet. In the rest of this chapter we will explore some of the special

features of triplet pairing by considering the prototypical BCS triplet state: superfluid 3He.

Further, it is legitimate to consider the rest of this thesis as an exploration of the differences in the

behaviour of the singlet and triplet BCS states in an exchange field.

The BCS wavefunction can be extended to allow for either singlet or triplet pairing. (We

will describe this formulation of BCS theory as spin-generalised.) The spin-generalised BCS

(SGBCS) Hamiltonian is

HSGBCS =
∑

kσ

εkĉ
†
kσ ĉkσ +

∑

kk′αβ

Vαβ(k − k′)ĉ†kαĉ
†
−kβ ĉ−kβ ĉkα, (3.4.1)

While the SGBCS wavefunction [213] is

|ΨSGBCS〉 =
∏

k

∏

α


uαα(k) +

∑

β

vαβ(k)ĉ†kαĉ
†
−kβ


 |0〉. (3.4.2)

The requirement that the SGBCS wavefunction is properly normalised yields

∑

αβ

|uαβ(k)|2 + |vαβ(k)|2 = 1. (3.4.3)

It is also useful to extend the definition of anomalous Green’s functions so that they can be

used to describe the spin-generalised state. To this end we define
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Fαβ(r1, τ1; r2, τ2) = −
〈
Tτ

(
ψ̃α(r1, τ1)ψ̃β(r2, τ2)

)〉
(3.4.4)

F†
αβ(r1, τ1; r2, τ2) = −

〈
Tτ

(
ψ̃α(r1, τ1)ψ̃β(r2, τ2)

)〉
(3.4.5)

Again we can compute the Green’s functions automatically. For a singlet or unitary4 triplet

state

Gαβ(k, ωn) = − iωn + ε(k) + µ

ω2
n + ε(k)2 +

∣∣∣
∣∣∣∆

k

∣∣∣
∣∣∣
2 δαβ , (3.4.6)

Fαβ(k, ωn) =
∆αβ(k)

ω2
n + ε(k)2 +

∣∣∣
∣∣∣∆

k

∣∣∣
∣∣∣
2 . (3.4.7)

The generalisation to non-unitary states and other details of the properties of the anomalous

Green’s functions for the spin-generalised BCS theory are given in Mineev and Samokhin [154]

and Sigrist and Ueda [193]. In chapter 4 for we will derive the spin-generalised BCS theory in an

exchange field.

3.5 Thermodynamics of the BCS state

As was described above, conventional BCS theory introduces an order parameter, ∆. This

order parameter describes the opening of a gap of 2|∆| at the Fermi level. This means that only

elementary excitations with an energy greater than 2|∆| can exist in the superconducting state. In

zero field the superconducting transition is second order, therefore the gap grows from zero at TC

to some maximum value
(
2∆(T = 0)

)
at absolute zero. However, at the same time the energy

available to form excitations (kBT ) decreases as the temperature is lowered. It can be shown

[154] that this leads to an exponential decay of thermodynamic quantities at low temperature. For

example, at low temperatures specific heat goes as,

CSC
V ∼ CN

V

(
TC

T

)5/2

e−|∆(0)|/T . (3.5.1)

where CSC
V is the heat capacity in the superconducting state, CN

V is the heat capacity in the

normal state and ∆(0) is the order parameter at T = 0.

4For a unitary state d(k) × d(k)∗ = 0, see section 3.9.6 for details.
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The above assumes an isotropic gap, however, as we saw in section 3.4, for states with

non-zero angular momentum the order parameter may vary within with k. Thus it is quite

possible for the order parameter to go to zero at some point in the Brillouin zone. If this point lies

on the Fermi surface it of course means that the gap goes to zero at that point, such a point is

known as a node. It is also perfectly possible for there to be lines of nodes on the Fermi surface5.

The gap going to zero has a profound effect on thermodynamics of the superconductor, as now

arbitrary small excitations are allowed at the node. This leads to power law behaviours at low

temperatures. Again using specific heat as an example for an isolated point node it can be shown

[154] that

CSC
V ∼ CN

V

(
T

TC

)3

. (3.5.2)

While, for a line of nodes

CSC
V ∼ CN

V

(
T

TC

)2

. (3.5.3)

We summarise other the equivalent results for other thermodynamic properties in table 3.1.

3.6 Some properties of superfluid 3He.

Superconductivity and superfluidity are essentially the same phenomena as a

superconductor can be viewed is simply a superfluid of electrons. The zero viscosity of the

superfluid leads to zero resistivity in a superconductor because of the charge on the electrons.

The first known superfluid was 4He, which has one important difference from a

superconductor. 4He is composed of 2 protons, 2 neutrons and 2 electrons are is therefore a

Boson. This means that the superfluidity in 4He is much more closely related to Bose–Einstein

condensation than BCS superconductivity [160]. On the other hand, 3He is composed of 2

protons, 1 neutron and 2 electrons and is therefore a Fermion. This is of course reminiscent of the

electrons in a superconductor. The advent of the BCS theory of superconductivity led to the

suggestion [65, 206, 39] that a BCS like mechanism could cause the 3He atoms form Cooper

pairs and thus condense into a superfluid.

One obvious difference between a the electrons in a BCS superconductor and the atoms in
3He is the background potential in which they move. The BCS theory of superconductivity

5In fact, it is even possible to have gapless superconductivity [193, 108] however, we will not discuss this possibility

here.
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nodeless gap point nodes line nodes

Specific heat [154, 193] CSC
V /CN

V ∼ e−|∆(0)|/T T 3 T 2

Thermal conductivitya [21, 187] κ/κN ∼ e−|∆(0)|/T T 2 T

NMR relaxation rate [193] 1/T SC
1

1/T N
1

∼ e−|∆(0)|/T T 5 T 3

Penetration deptha,b[14]

Normal fluid densityb[213]

λ(0)−λ(T )
λ(0)

ρN



 ∼ e−|∆(0)|/T T 2 T

Magnetic susceptibilityb[213, 154] χSC/χN ∼ e−|∆(0)|/T T 2 T

Table 3.1: The temperature dependence of various thermodynamic and transport properties at low

temperatures.
aIn a polycrystalline sample: in a single crystal thermal conductivity and penetration depth can be used to investigate

the location of the nodes as they are directional probes.
bFor a singlet superconductor. For an anisotropic triplet superconductor the situation is somewhat more complicated.

However, the normal fluid density tensor and the magnetic susceptibility tensor can be expressed in terms of the Yosida

function (which we will discuss in section 3.9 in the context of magnetic susceptibity, however, the treatment of the

normal density tensor is broadly similar [213] to that of the magnetic susceptibility). The anisotropy in the normal fluid

density was important in the identification of the phases of 3He and thus many books on the subject of 3He deal with

the normal fluid density in far greater detail than space permits here.

introduces an effective attractive potential which causes the conduction electrons to form Cooper

pairs. Frölich suggested [74] that this attraction arises from the electron–phonon interaction7.

Hence, in 3He where there is no crystal lattice, and hence no phonons another pairing mechanism

must be at work.

The interatomic potential in 3He is well described by van der Waals theory. Thus the main

features of the potential are the strong ‘hard core’ repulsion at short distances and the weak

attraction at medium separations. It is therefore clear that the quasiparticles be spatially separated

to avoid the hard core repulsion and hence, that the Cooper pairs must have non-zero angular

momentum. Pitaevskii [169] calculated the transition temperature of 3He based on the van der

Waals potential, but found that TC was unfeasibly low. This is because the Cooper pairs in 3He

are not formed from bare 3He atoms but from the quasiparticles of Landau’s Fermi liquid theory.

7This suggestion was latter made into a quantitative theory by Eliashberg [62, 63]. In fact BCS theory emerges as

the week coupling limit of Eliashberg theory and as such one can calculate the BCS effective potential, V , in terms

of the electron phonon coupling constant, λ. It turns out that D(εF )V = λ where D(εF ) is the density of states at

the Fermi level. For an excellent discussion of Eliashberg theory see [214], or for a discussion within the tight binding

model see [22].
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The effective mass of the quasiparticles in 3He can have as much as six times that of the

unrenormalised mass of a 3He atom. This large renormalisation effect is largely due to

ferromagnetic spin–fluctuation effects. (This can be seen from the qualitative agreement of the

thermodynamic and transport properties calculated from spin–fluctuation theory with experiment

[31, 59, 34, 35, 176, 177, 37, 179].) Emery [64] showed that ferromagnetic spin–fluctuations

favour spin–triplet states over spin–singlet states and it indeed turns out that 3He is a triplet

superfluid. 3He therefore became the first known superconducting/superfluid system in which the

order parameter does not have an s-wave symmetry. 3He is therefore the prototypical triplet

system and as such will often be referred to in this thesis.

In 1975 Leggett published one of the most influential papers [123] in the story of triplet

superfluidity/superconductivity. In this review he summarised much of what had been done

before and laid the groundwork of the unambiguous identification of the superfluid phases of
3He. Although Leggett’s article is highly readable and an excellent place to learn about triplet

superfluidity/superconductivity, 3He (along with its isotopic cousin 4He) is one of the best

characterised materials in nature and much has been discovered about 3He since 1975. There are

some excellent textbooks on the physics of helium at low temperatures, among the best are the

classic text by Vollhardt and Wölfle [213], the compilation edited by Bennemann and Ketterson

[28] and a more recent and comprehensive text has been written by Dobbs [58].

3.7 The (experimental) phase diagram of superfluid 3He

One strong indication of triplet superconductivity/superfludity is the existence of multiple

superconducting/superfluid phases. We will begin by considering the phase diagram of 3He in

zero field (figure 3.1). At ambient pressure 3He is superfluid down to the very lowest

temperatures, only becoming a solid at pressures greater than 3.44 MPa (at T = 0)8. The critical

temperature, TC , varies from 0.929 mK at P = 0 to 2.49 mK at the point labelled TA in figure

3.1. However, at the so-called polycritical point, P (T = 2.273 mK, P = 2.122 MPa), there is a

line, TAB , of first order transitions which terminates at TB′ (1.93 mK). This phase transition thus

occurs entirely within the superfluid region i.e. it is a transition between two superfluid phases.

The two phases where labelled the A and B phases as shown in the diagram.

We now consider the phase diagram of 3He in a finite magnetic field (see figure 3.2). The

most important feature to notice is the appearance of a phase transition within the A phase. The

8All data in this paragraph is taken from Dobbs [58].
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Figure 3.1: The experimentally determined phase diagram (P, T) of 3He in zero magnetic field,

taken from Dobbs [58].

two new phases we will label (with the advantage of hindsight) the A1 and A2 phases as indicated

in figure 3.2. The higher temperature A1 phase is therefore separated from the A phase by a

phase transition, where as there is no phase transition between the A and A2 phases. The fact that

there is a crossover between the A and A2 means that the A2 phase is often mislabelled the A

phase or described as the ‘A phase in a magnetic field’ [213]. However, there are many important

differences between the A phase and the A2 phase. We shall introduce some of these differences

in section 3.8 before discussing them in more detail in chapter 5. We should also note that in a

magnetic field the B phase crosses over to the B2 phase. We will discuss the nature of these

phases in section 3.9.

3.8 The Ginzburg-Landau theory of superfluidity in 3He

In section 3.1 we saw that a superconductor is described by a single, complex order

parameter. This is the appropriate theory for a singlet (s-wave) superconductor. To describe a

triplet superconductor we will need to introduce more degrees of freedom. Firstly, there are three

spin projections, therefore we must have an order parameter for each. However, the order

parameter of a triplet superconductor must transform as a vector under rotation (see section 3.3

for details) and so, the order parameter must have a (linear - in the p-wave case) k-dependence.
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Figure 3.2: The experimentally determined phase diagram (P, T, H) of 3He in a finite magnetic

field, taken from Vollhardt and Wölfle [213].
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(In three dimensions) there are three linearly independent k variables and therefore each spin

projection has three degrees of freedom. To describe a p-wave superconductor or superfluid we

therefore require a three by three matrix order parameter, A, which is related to the microscopic

order parameter, d(k) by

d(k) = A k̂. (3.8.1)

Barton and Moore [26] considered superfluids with non-zero angular momentum, l. They

showed that a singlet superconductor/superfluid is described by (1 + l) fourth order (β)

Ginzburg–Landau terms and that a triplet superconductor is described by (3l + 2) fourth order

Ginzburg–Landau terms. This means that a p-wave superconductor/superfluid such as 3He has

five fourth order terms. The free energy of condensation is given by,

FSC − FN = α tr(AA†) + β1|tr(AAT )|2 + β2

[
tr(AA†)

]2
+ β3tr

[
(AAT )(AAT )∗

]

+β4tr
[
(AA†)2

]
+ β5tr

[
(AA†)(AA†)∗

]
. (3.8.2)

This is commonly rewritten as

FSC − FN = α tr(AA†) +
5∑

i=1

βiIi (3.8.3)

where

I1 = |tr(AAT )|2, (3.8.4)

I2 =
[
tr(AA†)

]2
, (3.8.5)

I3 = tr
[
(AAT )(AAT )∗

]
, (3.8.6)

I4 = tr
[
(AA†)2

]
, (3.8.7)

I5 = tr
[
(AA†)(AA†)∗

]
. (3.8.8)

In the (BCS) weak coupling limit the Ginzburg–Landau coefficients take the following values,

α(T ) = −D(εF )

(
1 − T

TC

)
(3.8.9)

β2 = β3 = β4 = −β5 = −2β1 = 2β0 (3.8.10)
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where

β0 =
21

40
ζ(3)D(εF )(πkBTC)−2 (3.8.11)

and D(εF ) is the density of states at the Fermi level.

In section 3.9.4 we will explore the validity of the weak coupling approximation for

superfluid 3He.

3.9 The superfluid phases of 3He

The first theoretical investigations [12, 23] of triplet superfluid/superconducting phases

where carried out before the experimental discovery of superfluidity in 3He. After superfluidity

had been observed in 3He more systematic searches for the superfluid phases that are stable in

different regions of parameter (β) space were conducted [27, 43]. We shall now proceed to

discuss some of the more important phases in a quasi-historical order, beginning with ABM and

BW states in zero field. We shall then discuss the phases which are stable in a magnetic field and

give some details of some other (theoretically) possible phases.

3.9.1 The ABM phase

The first people to investigate triplet superconductivity where Anderson, Brinkman and

Morel (ABM) [12, 10]. They chose ‘more or less by chance’ [11] to consider the state

A =
1√
2




1 i 0

0 0 0

0 0 0


 , (3.9.1)

d(k) ∼ (kx + iky, 0, 0). (3.9.2)

This state has nodes (zeros of the order parameter at the Fermi energy) at kx = ky = 0 i.e. at the

north and south poles of a spherical Fermi surface, see figure 3.3.

The ABM state breaks time reversal symmetry (TRS) due to the complex nature of the

order parameter. To see the breaking of TRS consider the operation T which maps T to −T ,

T k = −k (3.9.3)
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Figure 3.3: The gap of the ABM state.

and

T σ = −σ. (3.9.4)

Therefore by (3.3.12),

T d(k) = −d∗(−k). (3.9.5)

Hence the ABM phase breaks TRS.

The ABM state has equal pairing amplitudes in the two equal spin pairing (ESP) states
(
| ↑↑〉 and | ↓↓〉

)
and no pairing in the Sz = 0 projection

(
1√
2

(
| ↑↓〉 + | ↓↑〉

))
. Thus we see that

vector order parameter, d(k) points perpendicular to the spin of the Cooper pair.

3.9.2 The BW phase

Balian and Werthamer (BW) showed [23] that, in the weak coupling limit, the state which

gives the absolute minimum of free energy is

A =
1√
3




1 0 0

0 1 0

0 0 1


 , (3.9.6)

d(k) ∼ (kx, ky, kz). (3.9.7)
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Figure 3.4: The gap of the BW state.

The BW state is clearly isotropic (see figure 3.4). Therefore it is thermodynamically

indistinguishable from the s-wave (BCS) state. As, modulo a complex phase, the BW is real it

does not break TRS. The BW state has equal pairing amplitudes for all three of the triplet pairing

states.

3.9.3 The Yosida function and the identification of the superfluid states of the

experimental (A and B) phases

For a singlet superconductor, the magnetic susceptibility, χ→ 0 as T → 0 (see table 3.1

for details). This is because as T → 0, the number of quasiparticles that have formed Cooper

pairs increases, until at T = 0 there are no unpaired quasiparticles. Singlet Cooper pairs have

zero spin, therefore electrons that are paired up do not contribute to (the dominant Pauli term of)

the magnetic susceptibility.

The ABM phase is has ESP only i.e. the spin 1 Cooper pairs are in the Sz = 1 and

Sz = −1 projections for H ‖ ẑ. This means that the Cooper pair contribute fully to the

susceptibility and, in the weak coupling limit,

χSC = χN . (3.9.8)

The BW phase contains all three projections. The Sz = ±1 pairs contribute to the

magnetic susceptibility as in the ABM phase. Where as the Sz = 0 pairs do not contribute to the

susceptibility for the same reasons as singlet pairs do not. As one third of the pairs are in the

Sz = 0 projection
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χSC =
2

3
χN . (3.9.9)

at T = 0 in the weak coupling limit.

The magnetic susceptibility of a superconductor/superfluid was first studied by Yosida9

[222], who introduced the function Y (T ). For a singlet superconductor the Yosida function is

defined by

χSC(T ) = Y (T )χN (T ). (3.9.10)

This can of course be generalised to triplet superconductivity. The temperature dependence of the

Yosida function depends on the node structure of the gap (table 3.1). As we have seen in the

weak coupling limit Cooper pairs with their spin (anti)parallel to the magnetic field do not

contribute to the magnetic susceptibility. Thus we define

χSC(T ) =

(
N‖
NSC

+
N⊥
NSC

Y (T )

)
χN (T ). (3.9.11)

Which clearly regains (3.9.10) for a singlet superconductor/superfluid. For the two phases we are

discussing here we have

χABM (T ) = χN (T ) ‖d(k), (3.9.12)

χABM (T ) = χN (T )Y (T ), ⊥ d(k), (3.9.13)

χBW (T ) = χN (T )

(
2

3
+

1

3
Y (T )

)
. (3.9.14)

The magnetic susceptibility as measured [217] by the NMR Knight [123] shift and other

thermodynamic measurements [123, 217] which determined the nodal structure allowed the

identification [123, 148] of the theoretical ABM and BW phases, with the experimental A and B

phases respectively10. From now on we will use the terms A phase and ABM phase

interchangeably. Similarly, the term B phase is synonymous with the term BW phase.

9Prof. Yosida’s name is often confused with the more common Japanese name Yoshida.
10It is worth noting the felicity of this coincidence as the experimental phases were named before this identification

was made. One can easily imagine the level of confusion if the naming convention had been the reverse! One might

also recall that in the past physicists have been particularly unlucky when choosing seemingly arbitrary conventions,

for example the charge on the electron (or equivalently the direction of conventional current) or the strangeness of the

strange quark.
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BW ABM

κBCS 1 1.2

κSC , 1.2MPa 0.829 0.916

κSC , 2.4MPa 0.759 0.783

κSC , 3.44MPa 0.716 0.678

Table 3.2: Values of κ(∝ F for T . TC) at various pressures from Sauls and Serine [186] and in

the BCS limit after Leggett [123].

3.9.4 Strong coupling corrections and the stabilisation of the A phase

We stated above that the B phase is the ground state in the weak coupling limit. This begs

the question, why is the A phase also seen experimentally in 3He? The obvious answer turns out

to be correct, strong coupling corrections, in particular paramagnon effects [123, 10, 148], are

important in 3He .

The strong coupling corrections are pressure dependent, which allows different phases to

be stable in different regions of the phase diagram, as is observed. To quantify this we introduce

the variable κ defined by

κ =
3

5

5∑

i=1

βiIi. (3.9.15)

It can be shown [58] that near TC

F ∝ κ. (3.9.16)

Table 3.2 shows the values of κ at various pressures after Sauls and Serine [186]. Also shown are

the weak coupling (BCS) values after Leggett [123]. It can clearly be seen that at the highest

pressure shown the A phase has the lowest free energy near TC , where as at the lower pressures

the B phase is stable.

3.9.5 The A1 phase

We have stated above that the A and B phases are not stable in a magnetic field so we will

now consider the phases observed in a magnetic field.

We begin by introducing the A1 phase, which has the order parameter,
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A =
1√
2




1 i 0

i −1 0

0 0 0


 , (3.9.17)

d(k) ∼ (kx + iky,i(kx + iky), 0) . (3.9.18)

It is interesting to note that in the A1 phase

d(k) × d∗(k) = (0, 0,−2i(|kx|2 + |ky|2)) (3.9.19)

and

∆
k
∆†

k
∼


 k2

x + k2
y 0

0 0


 . (3.9.20)

Because ∆
k

is not unitary, the A1 phase is described as a non-unitary phase. In general any

phase for which d(k) × d∗(k) 6= 0 is non-unitary. The only possible unitary phases are the BW,

ABM, planar and polar states. (See table 3.3.)

Note that d(k) × d∗(k) is purely imaginary, which is easily verified as

[d(k) × d∗(k)]∗ = d(k)∗ × d(k)

= −d(k) × d∗(k). (3.9.21)

The A1 phase has zero pairing amplitude in the | ↓↓〉 and 1√
2
(| ↑↓〉 + | ↓↑〉) states and so

only has finite pairing in the | ↑↑〉 state. The A1 has the same nodal structure as the A phase, that

is point nodes at the north and south poles (kx = ky = 0, see figure 3.3). We can of course

construct the state

d(k) ∼ (kx + iky,−i(kx + iky), 0) . (3.9.22)

This is also an A1 phase. However, in this case we have pairing in the | ↓↓〉 channel but none in

the | ↑↑〉 or 1√
2
(| ↑↓〉 + | ↓↑〉) channels.
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3.9.6 The A2 phase

The order parameter of the A2 phase is

A =
1√
2




1 i 0

iκ −κ 0

0 0 0


 , (3.9.23)

d(k) ∼ (kx + iky,iκ(kx + iky), 0) (3.9.24)

where

κ =
∆↓↓ − ∆↑↑
∆↓↓ + ∆↑↑

∼ −N↑ −N↓
N↑ +N↓

. (3.9.25)

Clearly the A2 is non-unitary and has the same nodal structure as the A and A1 phases.

The A2 phase is described by the parameter κ, which is a function of H and T . Phases

whose order parameters depend on the state variables where named non-inert by Barton and

Moore [27]. All the other phases considered above are inert that is, they are independent of the

state variables.

We now see that where as the A phase corresponds to equal pairing amplitudes in the | ↑↑〉
and the | ↓↓〉 channels and the A1 phase corresponds to a finite pairing amplitude in one spin state

only, the A2 phase has finite, but different, pairing amplitudes in the | ↑↑〉 and | ↓↓〉 channels.

Thus when κ = 0 the A2 becomes the A phase, this is a crossover because it is simply two

pairing amplitudes becoming equal. Experimentally this is observed as |H| → 0 and no phase

transition is seen. When κ = ±1 the A2 phase becomes the A1 phase, which means that the

pairing amplitude for one spin state goes to zero. Clearly this is a phase transition.

Experimentally the boundary between the A1 and A2 phases is a phase transition, so our

description of the physics is in agreement with experiment.

An analogy may be drawn between the A phases of 3He and the description of elliptically

polarised light in optics [33]. One can think of the three axial (A, A1 or A2) phases as being

described by an ellipse of eccentricity
√

1 − κ2. The A phase is the special case of linear

polarisation when the ellipse reduces to a line parallel to d(k). The A1 phase is the special case

of circularly polarised light a circle which lies in the x,y-plane. The A2 phase corresponds to any

ellipse between these two extremes.
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Figure 3.5: The splitting of the A1 and A2 phases by a magnetic field as measured by Remeijer et

al. [175].

3.9.7 Splitting of the A1 and A2 phases by a magnetic field

In magnetic field there are three phase transitions (see figure 3.2). We will now focus on

the transition from the normal state to the A1 phase which we will call TA1 , and the transition

from the A1 phase to the A2 phase which we call TA2 .

It is observed experimentally [175] that, at a constant pressure, TA1 increases and

conversely TA2 decreases with an applied field (see figure 3.5). This is in qualitative agreement

with the results of Ginzburg–Landau theory when the calculations include strong coupling

corrections [104].

In a magnetic field, the coefficient of the quadratic term, α, of the Ginzburg–Landau

expansion (3.8.2) becomes [175]

α↑,↓ = −D(εF )

(
1 − T

TC

)
± η|H|. (3.9.26)

As in Ginzburg–Landau theory TC is the temperature at which α = 0, a magnetic field clearly

splits the transition temperature on the two (spin) sheets of the Fermi surface. In the BCS theory

the transition temperature is given by [214]



3.9 The superfluid phases of 3He 53

TC ∼ e−1/V D(εF ). (3.9.27)

For ESP states in a magnetic field this becomes [213]

T ↑,↓
C ∼ e−1/λ↑,↓

(3.9.28)

where, to first order in H,

λ↑,↓ = V D(εF ) ± µB|H|V ∂D(εF )

∂εF
. (3.9.29)

Thus, the splitting of TA1 and TA2 is equivalent to a splitting in the | ↑↑〉 and | ↓↓〉 transition

temperatures. Which to first order in H split linearly with the applied field, in good agreement

with experiment.

3.9.8 The B2 phase

In a magnetic field the B phase is unstable with respect to the B2 phase whose order

parameter is

A =
1√
3




1 iκ 0

−iκ 1 0

0 0 1


 , (3.9.30)

d(k) ∼ (kx + iκky, ky − iκkx, kz) . (3.9.31)

where κ is given by equation 3.9.25. It is clear from the above discussion that the B2 phase in

non-unitary and non-inert.

3.9.9 Other stable phases of triplet superconductors/superfluids

We have now discussed all of the phases which have been observed in 3He . We will

conclude this section by detailing some phases which have been found to be stable in certain

regions of phase space, both in zero field and in a finite magnetic field. The results in this tables

3.3 and 3.4 summarise Vollhardt and Wölfle [213] and Barton and Moore [27].
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Polar




1 0 0

0 0 0

0 0 0


 (kx, 0, 0)

inert

unitary

α 1√
3




1 0 0

0 e−i2π/3 0

0 0 ei2π/3




(
kx, kye

−i2π/3, kze
i2π/3

) inert

non-unitary

β




1 0 0

i 0 0

0 0 0


 (kx,ikx, 0)

inert

non-unitary

Axi-planar




0 sin θ sinφ 0

− cos θ 0 i sin θ cosφ

0 0 0







sin θ sinφky,

− cos θkx + i sin θ cosφkz,

0




non-inert

non-unitary

δ




0 − cos θ 0

sin θ sinφ 0 0

0 i sin θ cosφ 0







− cos θky,

sin θ sinφkx,

i sin θ cosφky




non-inert

non-unitary

ε




0 0 cos θ

0 0 i cos θ

sin θ i sin θ 0







cos θkz,

i cos θkz,

sin θkx + i sin θky




non-inert

non-unitary

ζ




− sin θ cosφ −i sin θ sinφ 0

−i sin θ sinφ sin θ cosφ 0

0 0
√

2 cos θ







− sin θ cosφkx − i sin θ sinφky,

−i sin θ sinφkx + sin θ cosφky,
√

2 cos θkz




non-inert

non-unitary

Table 3.3: The order parameters of some triplet phases, after Vollhardt and Wölfle [213] and Barton and Moore [27].
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Phase A d(k)

A (ABM, axial) 1√
2




1 i 0

0 0 0

0 0 0


 (kx + iky, 0, 0)

inert

unitary

A1 (γ, axial) 1
2




1 i 0

i −1 0

0 0 0


 (kx + iky,i(kx + iky), 0)

inert

non-unitary

A2 (axial) 1√
2κ




1 i 0

iκ −κ 0

0 0 0


 (kx + iky,iκ(kx + iky), 0)

non-inert

non-unitary

B (BW, isotropic) 1√
3




1 0 0

0 1 0

0 0 1


 (kx, ky, kz)

inert

unitary

B2 (oblate) 1√
3




1 iκ 0

−iκ 1 0

0 0 1


 (kx + iκky, ky − iκkx, kz)

non-inert

non-unitary

Bipolar 1√
2




1 0 0

0 i 0

0 0 0


 (kx,iky, 0)

inert

non-unitary

Planar (B1) 1√
2




1 0 0

0 1 0

0 0 0


 (kx, ky, 0)

inert

unitary
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Phase Synonyms I1 I2 I3 I4 I5 stable region

A ABM, axial 0 1 0 1 1 β1, β3 > 0;β3β4 < 0

A1 γ, axial 0 1 0 1 0 β3, β5 > 0;β4 < 0

B BW, isotropic 1 1 1
3

1
3

1
3 weak coupling, −β1, β4 → ∞

Bipolar 0 1 1
2

1
2

1
2 No simple criteria

Planar B1 1 1 1
2

1
2

1
2 No simple criteria

Polar 1 1 1 1 1 β1, β3, β4, β5 < 0

α 0 1 1
3

1
3

1
3 β1, β4 → ∞

β 0 1 1 1 0 β1, β5 > 0;β3, β4 < 0

Table 3.4: Some inert triplet superfluid/superconducting phases, after Vollhardt and Wölfle [213]

and Barton and Moore [27].



Chapter 4

The Hubbard model

In this chapter we will introduce the Hubbard model. After a brief survey of the

development and uses of the Hubbard model we will examine the phenomenon of

ferromagnetism - the context in which the Hubbard model was first studied. We then derive the

spin-generalised Hartree–Fock–Gorkov Hamiltonian which will form the basis of this thesis from

an extended Hubbard model. From this Hamiltonian we derive a spin-generalised Bogoliubov–de

Gennes (BdG) equations. The spin dependent order parameter is then separated into triplet and

singlet parts and the BdG equations are thus separated into equations for singlet (even–parity)

and for triplet (odd–parity) superconductivity. These two cases are then studied independently.

Analytical results for the spectrum of the elementary excitations and various thermodynamic

quantities are derived for both cases and the singlet case is, briefly, studied numerically. We

reproduce several well know results for singlet superconductors in zero field and describe the

effect of an exchange field on a s-wave superconductor. We examine the

Clogston–Chandrasekhar limit in singlet superconductors both analytically and numerically and

we show analytically that a similar phenomena can occur (in certain circumstances) in a triplet

superconductor.

Some of the results presented in this chapter have previously been published in reference

[172].

4.1 Historical development

In 1963 Hubbard begin a series of papers [92, 93, 94, 95, 96, 97] in which he developed a

model of ‘Electron Correlations in Narrow Energy Bands.’ Although Gutzwiller [86] and

57
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Kanamori [105] considered similar models at about the same time, this paradigm of condensed

matter physics is universally known as the Hubbard model.

In his original paper [92] Hubbard postulates a Hamiltonian for the electrons in a band and

then, by introducing the Wannier functions, derives his Hamiltonian. However, from the

perspective of tight binding theory - which is the perspective we predominantly take in this thesis

- the correct thing to do is to postulate the Hubbard Hamiltonian and proceed from there. We will

therefore take the later approach.

Within the tight binding approximation it is natural to consider a lattice of ‘sites’. Each site

represents a single orbital of a single atom which can accommodate, at most, two electrons (one

of each spin.) The canonical Hubbard Hamiltonian is:

Ĥ = −
∑

ijσ

tij ĉ
†
iσ ĉjσ + U

∑

i

n̂i↑n̂i↓. (4.1.1)

tij is the usual hoping integral i.e. the amplitude of an electron on site i ‘hoping’ to site j. ĉ(†)iσ

annihilates (creates) an electron with spin σ on site i. The number operator, n̂iσ ≡ ĉ†iσ ĉiσ, counts

the number of electrons with spin σ on site i, and clearly can only take the values 0 or 1. U is the

potential between an electron on site i and an electron with the opposite spin1 on the same site. U

is therefore described as an ‘on-site’ potential. (The terms introduced above are discussed in

greater detail in chapter 2.)

There are many ways in which the Hubbard model can be extended and in its various

formulations many solutions have been found. With U > 0 paramagnetic-metallic [86, 128],

ferromagnetic-metallic [92] and antiferromagnetic-insulating [128, 8] solutions have been found.

For U < 0 there are normal Fermi liquid [212], insulating charge density wave [111], insulating

normal Bose liquid [150], Bose-Einstein type (bipolaron) superfluids [150] and superconducting

[128] solutions. There are also have been several attempts to explain the exotic high temperature

superconductivity of the cuprates [9] such as the t-J model [223], which is derived from the

Hubbard model. Yet even this is far from exhaustive list, as virtually every imaginably condensed

matter system has been studied, at one time or another, in the context of the Hubbard model.

1As there are only two states on each site (one corresponding to each spin state) the Pauli exclusion principle ensures

that only electrons with opposite spin to one another can occupy the same site simultaneously.
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4.2 Ferromagnetism from the Hubbard model

We will now consider one of the solutions presented in the paper in which Hubbard first

introduced the Hubbard model [92]. We will study the Hubbard model with U > 0 and as, for

arbitrary U , in an arbitrary number of dimensions and in the thermodynamic limit, we do not

know how to solve this model exactly we will use a mean field approximation.

4.2.1 Wicks theorem and the Hartree-Fock approximation

Wick’s theorem [56, 83] states that for non interacting particles

〈ψ̂†
1ψ̂

†
2ψ̂3ψ̂4〉 = 〈ψ̂†

1ψ̂4〉〈ψ̂†
2ψ̂3〉 − 〈ψ̂†

1ψ̂3〉〈ψ̂†
2ψ̂4〉 + 〈ψ̂†

1ψ̂
†
2〉〈ψ̂3ψ̂4〉. (4.2.1)

It should be noted that this is an exact result and no approximation has been made. For the case

of interacting particles Wicks theorem is no longer valid. But, we can progress using Wick’s

theorem as the basis for approximations.

We cannot apply Wick’s theorem to an interacting system, but the Hartree–Fock

approximation, which has the same mathematical form, can be used. We begin by noting that if

the wavefunction is an eigenstate of the number operator, then

〈ĉi↑ĉi↓〉 = 〈ĉ†i↑ĉ
†
i↓〉 = 0. (4.2.2)

and we assume that spin flip processes and negligible, that is that

〈
ĉ†i↑ĉi↓

〉
=
〈
ĉ†i↓ĉi↑

〉
= 0. (4.2.3)

To derive the Hartree–Fock approximation, we write the interaction term of the Hubbard

Hamiltonian 4.1.1 in terms of the fluctuations about the mean values of the number operators.

Ĥint = U
∑

i

n̂i↑n̂i↓ (4.2.4)

= U
∑

i

ĉ†i↑ĉi↑ĉ
†
i↓ĉi↓ (4.2.5)

= U
∑

i

(
ĉ†i↑ĉi↑ −

〈
ĉ†i↑ĉi↑

〉
+
〈
ĉ†i↑ĉi↑

〉)(
ĉ†i↓ĉi↓ −

〈
ĉ†i↓ĉi↓

〉
+
〈
ĉ†i↓ĉi↓

〉)
. (4.2.6)

Clearly,
〈
ĉ†iσ ĉiσ

〉
is the mean of n̂iσ and the fluctuations about the mean are given by

ĉ†iσ ĉiσ −
〈
ĉ†iσ ĉiσ

〉
. Thus we find that,
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Ĥint = U
∑

i

[(
ĉ†i↑ĉi↑ −

〈
ĉ†i↑ĉi↑

〉)(
ĉ†i↓ĉi↓ −

〈
ĉ†i↓ĉi↓

〉)

+
(
ĉ†i↑ĉi↑ −

〈
ĉ†i↑ĉi↑

〉)〈
ĉ†i↓ĉi↓

〉

+
〈
ĉ†i↑ĉi↑

〉(
ĉ†i↓ĉi↓ −

〈
ĉ†i↓ĉi↓

〉)
+
〈
ĉ†i↑ĉi↑

〉〈
ĉ†i↓ĉi↓

〉]
. (4.2.7)

So to first order in the fluctuations we have

Ĥint ≈ U
∑

i

[(
ĉ†i↑ĉi↑ −

〈
ĉ†i↑ĉi↑

〉)〈
ĉ†i↓ĉi↓

〉

+
〈
ĉ†i↑ĉi↑

〉(
ĉ†i↓ĉi↓ −

〈
ĉ†i↓ĉi↓

〉)
+
〈
ĉ†i↑ĉi↑

〉〈
ĉ†i↓ĉi↓

〉]
(4.2.8)

= U
∑

i

[〈
ĉ†i↓ĉi↓

〉
ĉ†i↑ĉi↑ +

〈
ĉ†i↑ĉi↑

〉
ĉ†i↓ĉi↓ −

〈
ĉ†i↑ĉi↑

〉〈
ĉ†i↓ĉi↓

〉]
. (4.2.9)

Transforming away the last term of the right hand side of equation 4.2.10 which is a constant we

arrive at the Hartree–Fock approximation,

Ĥint ≈ U
∑

i

[〈
ĉ†i↓ĉi↓

〉
ĉ†i↑ĉi↑ +

〈
ĉ†i↑ĉi↑

〉
ĉ†i↓ĉi↓

]
. (4.2.10)

We now assume that our system is homogeneous

〈
ĉ†iσ ĉiσ

〉
≡

〈
n̂iσ

〉
(4.2.11)

= niσ (4.2.12)

' nσ, (4.2.13)

Thus equation 4.1.1 is approximated by

ĤHF =
∑

ijσ

tij ĉ
†
iσ ĉjσ + U

∑

iσ

n−σ ĉ
†
iσ ĉiσ. (4.2.14)

which is a single electron Hamiltonian, and therefore much easier to solve. This approximation is

equivalent to calculating the expectation value with respect to a mean field wavefunction.
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4.2.2 Solution of the mean field Hamiltonian

We can solve the Hartree–Fock Hamiltonian exactly in arbitrary dimension. We begin by

noting that for U = 0 we regain the tight binding Hamiltonian (2.3.26) but writing the

Hartree–Fock–Hubbard Hamiltonian in the form

ĤHF =
∑

ijσ

(tij + Un−σδij) ĉ
†
iσ ĉjσ, (4.2.15)

it is clear (from the arguments given in section 2.3.1) that

εHF
kσ = ε0kσ + Un−σ, (4.2.16)

where ε0kσ is the dispersion relation found from the tight binding model (or, indeed, the Hubbard

model with U = 0). If we define

n = n↑ + n↓ (4.2.17)

m = n↑ − n↓ (4.2.18)

then we have

εHF
k↑ = ε0kσ +

1

2
Un+

1

2
Um (4.2.19)

εHF
k↓ = ε0kσ +

1

2
Un− 1

2
Um. (4.2.20)

The exchange splitting2, Eex, is given by

Eex = εHF
k↑ − εHF

k↓ = Um. (4.2.21)

The effect of a finite Eex is to split the spectrum into two branches - one for each of the spin

states. This is sketched in figure 4.1.

It is not immediately clear why an on site interaction should lead to ferromagnetism.

However, one should realise that we are dealing with metallic magnetism. This means that we

have itinerant electrons which spend a short time on any given site compared with the lifetime of

2The exchange splitting is often denoted ∆, however we will not use this notation in this thesis to avoid confusion

with the superconducting order parameter, which is also usually denoted ∆.
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Figure 4.1: Sketch of the effect of exchange splitting on the spectrum of a one dimensional Hub-

bard model. The upper curve is εk +Eex, the middle curve is εk and the lower curve is εk −Eex.

the magnetic moment on that site. The positive U implies that there is an energy penalty for

doubly occupied sites, but, the Pauli exclusion principle ensures that electrons of the same spin

cannot be on the same site. Which means that electrons of the same spin have lower energy and

thus drives ferromagnetism.

4.3 Derivation of the spin–generalised Bogoliubov–de Gennes

equations in the presence of a magnetic field

We will now use the Hubbard model to study superconductivity. Cooper showed that [52],

in the presence of an arbitrarily weak, attractive interaction two electrons near to the Fermi level

are always unstable with respect to the formation of a bound state (a Cooper pair). BCS theory

extends this simple model to deal with the full many body problem within mean field theory.

Thus, as we want to study superconductivity, it is natural to consider effective attractive pairwise

potentials i.e. negative U models.

In real materials, interactions are not only on site. We can take account of this by

introducing inter-site interaction constants, Uijσσ′ , which will in general depend on the spin of

the two electrons. These new interaction constants still describe two body interactions, so our

generalised Hubbard Hamiltonian is
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Ĥ =
∑

ijσ

tij ĉ
†
iσ ĉjσ +

1

2

∑

ijσσ′

Uijσσ′n̂iσn̂jσ′ . (4.3.1)

It is simple to see that on site potentials cannot give triplet superconductivity. As only one

electron of each spin can occupy each site the equal spin pairing (ESP) states will clearly not

arise from on site potentials. However, one can see that no triplet states can arise from an on site

potential as all triplet states must have odd parity and on site potentials cannot give a k dependent

order parameter, which means that the order parameter is, trivially, even.3

In general two new terms are introduced into the Schrödinger equation by a magnetic field:

the minimal coupling term
(
p̂ = −i~∇ 7→ −i~∇− e

cA
)

and the Zeeman term
(

1
2µBσH

)
. The

vector potential enters via minimal coupling and thus only effects the kinetic energy terms, tij . It

can be shown [151, 152] that in a magnetic field

tij 7→ tij exp

(−ie
~

∫ Rj

Ri

A(r) · dr
)

= tije
−iAij . (4.3.2)

Thus the Hamiltonian for the Hubbard model generalised to include nth nearest neighbour

interactions in the presence of a magnetic field is

Ĥ = −
∑

ijσ

tije
−iAij ĉ†iσ ĉjσ +

1

2

∑

ijσσ′

Uijσσ′n̂iσn̂jσ′ + µB

∑

iσσ′

ĉ†iσ(σσσ′ · H)ĉiσ (4.3.3)

where the σσσ′ are the components of the vector of Pauli matrices

σ = (σ
1
, σ

2
, σ

3
). (4.3.4)

However, in this thesis we do not attempt to solve this Hamiltonian. Instead we neglect the

vector potential. The differences between singlet and triplet superconductors are caused by the

spin of the Cooper pairs. Thus, the most interesting new physics observed in a triplet

superconductor is likely to be due to the interaction of the Cooper pairs with a magnetic field via

the Zeeman term.

In chapter 5 we consider the triplet superconductor Sr2RuO4 in a magnetic field. The

upper critical field, HC2 is determined by the interaction with the vector potential, so we will be

unable to comment on HC2. But, away from HC2 it is plausible that many effects are dominated

3This is not strictly true, Spalek and co-workers [198] have considered on site potentials in multiple orbital models

and have found triplet solutions. However, for single orbital models the above discussion is correct.
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by the Zeeman term particularly in light of the large Stoner enhancement in Sr2RuO4 (see section

5.1.1). In chapter 6 we consider the weak Stoner ferromagnet ZrZn2. For this system the Zeeman

term is likely to be the dominant interaction between ferromagnetism and superconductivity.

Neglecting the effect of the vector potential our Hamiltonian becomes

Ĥ = −
∑

ijσ

tij ĉ
†
iσ ĉjσ +

1

2

∑

ijσσ′

Uijσσ′n̂iσn̂jσ′ + µB

∑

iσσ′

ĉ†iσ(σσσ′ · H)ĉiσ (4.3.5)

This model has a very rich set of solutions, so much so that the remainder of this thesis will

almost entirely consist of solutions of this Hamiltonian.

4.3.1 The Hartree–Fock–Gorkov approximation

The BCS wavefunction is a coherent state. This means that it is not an eigenstate of the

number operator, but it is an eigenstate of the annihilation/creation operator. Therefore,

〈ψ̂†
1ψ̂

†
2〉, 〈ψ̂3ψ̂4〉 6= 0. (4.3.6)

The Hartree–Fock–Gorkov approximation treats these terms in the same way as the Hartree–Fock

approximation treats the ‘number operator terms’. That is one introduces a mean field order

parameter, ∆ijσσ′ and its Hermitian conjugate, which are defined by,

∆ijσσ′ = −Uijσσ′〈ĉiσ ĉjσ′〉 (4.3.7)

∆†
ijσσ′ = −Uijσσ′〈ĉ†jσ′ ĉ

†
iσ〉 (4.3.8)

The Hartree–Fock–Gorkov Hamiltonian is therefore,

ĤHFG =
∑

ijσσ′

{
tijδσσ′ ĉ†iσ ĉjσ +

1

2
∆ijσσ′ ĉ†iσ ĉ

†
jσ′ −

1

2
∆†

ijσσ′ ĉiσ ĉjσ′ + µBδij ĉ
†
iσ(σσσ′ · H)ĉiσ

}

(4.3.9)

4.3.2 The Bogoliubov-de Gennes equations

Famously the Hartree–Fock–Gorkov Hamiltonian is diagonalised by the

Bogoliubov–Valatin transformation [56]
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ĉi↑ =
∑

k

uk(Ri)γ̂k↑ − v∗k(Ri)γ̂
†
k↓ (4.3.10)

ĉi↓ =
∑

k

uk(Ri)γ̂k↓ + v∗k(Ri)γ̂
†
k↑ (4.3.11)

where

uk(Ri)u
∗
k(Rj) + vk(Ri)v

∗
k(Rj) = δij . (4.3.12)

This can be extended for the spin-generalised situation when the transformations are

ĉiσ =
∑

kσ′

ukσσ′(Ri)γ̂kσ′ + v∗kσσ′(Ri)γ̂
†
kσ′ (4.3.13)

and the completeness relation is

∑

kσ

(
u∗kασ(Ri)ukβσ(Rj) + vkασ(Ri)v

∗
kβσ(Rj)

)
= δijδαβ . (4.3.14)

The completeness relation follows from the fact that both the ĉ and γ̂ operators are Fermionic

operators and as such obey

{
ĉ†iσ, ĉjσ′

}
= δijδσσ′ , (4.3.15)

{
γ̂†kσ, γ̂k′σ′

}
= δ(k − k′)δσσ′ . (4.3.16)

We must now choose our Bogoliubov-Valatin transformation so that it diagonalises the

Hamiltonian, or equivalently so that

Ĥ =
∑

kσ

Ekσγ
†
kσγkσ. (4.3.17)

Now, from equation 4.3.9 we have

[
Ĥ, ĉiσ

]
=
∑

kjαβ

((
tijδσα − µB(σσα · H)δij

)(
ukαβ(Rj)γkβ + v∗kαβ(Rj)γ

†
kβ

)

−∆ijσα

(
u∗kαβ(Rj)γ

†
kβ + vkαβ(Rj)γkβ

))
. (4.3.18)

But, from equation 4.3.17 we have
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[
Ĥ, ĉiσ

]
=

[
Ĥ,
∑

kβ

(
ukσβ(Ri)γkβ + v∗kσβ(Ri)γ

†
kβ

)]
(4.3.19)

=
∑

kβ

(
− Ekβukσβ(Ri)γkβ + Ekβv

∗
kσβ(Ri)γ

†
kβ

)
. (4.3.20)

So, equating coefficients of γkβ we find that

∑

jβ

(
tijδαβ + µB(σαβ · H

)
ukβσ(Rj) + ∆ijαβvkβσ(Rj) = Ekσukασ(Ri), (4.3.21)

while equating coefficients of γ†kβ gives

∑

jβ

(
− tijδαβ − µB(σ∗αβ · H)δij

)
vkβσ(Rj) − ∆∗

ijαβukβσ(Rj) = Ekσvkασ(Ri). (4.3.22)

(4.3.21) and (4.3.22) are the spin generalised Bogoliubov–de Gennes (BdG) equations in real

space. In principle we could solve these but the sum over (infinitely many) lattice sites (in

thermodynamic limit) makes this impossible in practice. Fortunately we can avoid this problem

by Fourier transforming the BdG equations, which gives

∑

β

(
εkδαβ + µB(σαβ · H)

)
ukβσ + ∆αβ(k)vkβσ = Ekσukασ, (4.3.23)

∑

β

(
− εkδαβ − µB(σ∗αβ · H)

)
vkβσ − ∆∗

αβ(k)ukβσ = Ekσvkασ (4.3.24)

or, in their, more familiar, matrix form




εk + µBH3 µB(H1 − iH2) ∆↑↑(k) ∆↑↓(k)

µB(H1 + iH2) εk − µBH3 ∆↓↑(k) ∆↓↓(k)

−∆∗
↑↑(−k) −∆∗

↑↓(−k) −ε−k − µBH3 µB(−H1 − iH2)

−∆∗
↓↑(−k) −∆∗

↓↓(−k) µB(−H1 + iH2) −ε−k + µBH3







u↑σ(k)

u↓σ(k)

v↑σ(k)

v↓σ(k)




= Eσ(k)




u↑σ(k)

u↓σ(k)

v↑σ(k)

v↓σ(k)



. (4.3.25)
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4.3.3 The self consistency conditions

Recall that we defined the order parameter by

∆ijσσ′ = −Uijσσ′〈ĉiσ ĉjσ′〉 (4.3.26)

substituting the Bogoliubov–Valatin transformation (4.3.13) into this we find that

∆ijσσ′ = −Uijσσ′

∑

qσ′′

(
uqσσ′′(Ri)v

∗
qσ′σ′′(Rj)

(
1 − fEqσ

)
+ v∗qσσ′′(Ri)uqσ′σ′′(Rj)fEqσ

)

(4.3.27)

as 〈γ̂qσγ̂
†
qσ〉 = (1 − fEqσ) and 〈γ̂†qσγ̂qσ〉 = fEqσ . However, the total wavefunction, and thus the

order parameter by 4.3.26 must be antisymmetric under the exchange of spin and coordinate

labels. Hence,

∆ijσσ′ = −∆jiσ′σ (4.3.28)

= Uijσσ′

∑

qσ′′

(
uqσ′σ′′(Rj)v

∗
qσσ′′(Ri)

(
1 − fEqσ

)
+ v∗qσ′σ′′(Rj)uqσσ′′(Ri)fEqσ

)
.

Subtracting (4.3.28) from (4.3.27) gives

∆ijσσ′ = −1

2
Uijσσ′

∑

qσ′′

(
uqσσ′′(Ri)v

∗
qσ′σ′′(Rj) − v∗qσσ′′(Ri)uqσ′σ′′(Rj)

)(
1 − 2fEqσ′′

)

(4.3.29)

Fourier transforming we find that the order parameters ∆σσ′(k) are determined self consistently

by

∆σσ′(k) = −1

2

∑

qσ′′

Uσσ′(k − q)
(
uσσ′′(−q)v∗σ′σ′′(−q) − v∗σσ′′(q)uσ′σ′′(q)

)
(1 − 2fEqσ′′ )

(4.3.30)

where Uσσ′(k− q) is the lattice Fourier transform of Uijσσ′ . We note that if only the on site term

is finite then Uσσ′(k − q) must be spin dependent because to the Pauli exclusion principle.

Similarly we can calculate the Hartree–Fock terms,
〈
ĉ†iαĉjβ

〉
, by substituting in the

Bogoliubov–Valatin transformations. This gives additional terms in the normal state energy,

ε′αβ(k), where



68 The Hubbard model

ε′αβ(k) =
∑

qσ

Uαβ(k − q)
(
u∗ασ(q)uβσ(q)fEqσ + vασ(−q)v∗βσ(−q)

(
1 − fEqσ

))
. (4.3.31)

4.3.4 Singlet-triplet separation

It is natural to separate the spin-generalised BdG equation into triplet and singlet parts. In

the BW notation [23] (see section 3.3 for an introduction):

∆(k) ≡


∆↑↑(k) ∆↑↓(k)

∆↓↑(k) ∆↓↓(k)


 = (d0(k) + σ · d(k))iσ2. (4.3.32)

d0(k) is the (scalar) singlet order parameter and d(k) is the (vector) triplet order parameter4. The

singlet order parameter is symmetric under spatial inversion while the triplet order parameter in

anti-symmetric under spatial inversion. Hence, the BdG equation can be rewritten as




εk + µBH3 µB(H1 − iH2) −d1(k) + id2(k) d0(k) + d3(k)

µB(H1 + iH2) εk − µBH3 −d0(k) + d3(k) d1(k) + id2(k)

−d∗1(k) − id∗2(k) −d∗0(k) + d∗3(k) −εk − µBH3 µB(−H1 − iH2)

d∗0(k) + d∗3(k) d∗1(k) − id∗2(k) µB(−H1 + iH2) −εk + µBH3







u↑σ(k)

u↓σ(k)

v↑σ(k)

v↓σ(k)




= Eσ(k)




u↑σ(k)

u↓σ(k)

v↑σ(k)

v↓σ(k)



. (4.3.34)

4.4 Regaining BCS (singlet) superconductivity from the

spin–generalised Bogoliubov–de Gennes equations

If there is no superconductivity in the triplet channel the BdG equations are

4We note that we have separated the singlet and triplet parts using the quaternion group [46]

{
σ0iσ2, σ1iσ2, σ2iσ2, σ3iσ2

}
(4.3.33)

Quaternions were first introduced by Hamilton [88] as a generalisation to complex numbers, and interestingly enough,

are where the letters i, j and k as commonly used for the unit vectors in Cartesian space originate.
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


εk + µBH3 µB(H1 − iH2) 0 d0(k)

µB(H1 + iH2) εk − µBH3 −d0(k) 0

0 −d∗0(k) −εk − µBH3 µB(−H1 − iH2)

d∗0(k) 0 µB(−H1 + iH2) −εk + µBH3







u↑σ(k)

u↓σ(k)

v↑σ(k)

v↓σ(k)




= Eσ(k)




u↑σ(k)

u↓σ(k)

v↑σ(k)

v↓σ(k)



. (4.4.1)

In section 3.3 we saw that d0(k) transforms as a scalar under rotation. This means that we can

always rotate the system so that H is parallel to ẑ. The BdG equations then become




εk + µB|H| 0 0 d0(k)

0 εk − µB|H| −d0(k) 0

0 −d∗0(k) −εk − µB|H| 0

d∗0(k) 0 0 −εk + µB|H|







u↑σ(k)

u↓σ(k)

v↑σ(k)

v↓σ(k)




= Eσ(k)




u↑σ(k)

u↓σ(k)

v↑σ(k)

v↓σ(k)



. (4.4.2)

Which can be separated into sets of BdG equations, so we have


εk + µB|H| d0(k)

d∗0(k) −εk + µB|H|




u↑↑(k)

v↓↑(k)


 = E↑(k)


u↑↑(k)

v↓↑(k)


 (4.4.3)

and


εk − µB|H| −d0(k)

−d∗0(k) −εk − µB|H|




u↓↓(k)

v↑↓(k)


 = E↓(k)


u↓↓(k)

v↑↓(k)


 . (4.4.4)

It is now a simple matter to regain the standard result [154] for the spectrum of a singlet

superconductor in a spin only magnetic field:
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Eσ(k) =
√
ε2k + |d0(k)|2 + σµB|H|, (4.4.5)

with σ =↑≡ 1 and σ =↓≡ −1. Equation 4.4.5 clearly reduces to the standard BCS expression

for the spectrum of a singlet superconductor in zero field as H → 0. Also, when H = 0

equations 4.4.3 and 4.4.4 reduce to the usual BdG equations [56] and we see that we are justified

in associating d0(k) with the usual singlet superconducting order parameter ∆(k).

4.4.1 The peculiar independence of the gap of a singlet superconductor on H at

T = 0

It is clear from equation 4.4.2 that

uσ−σ(k) = vσσ(k) = 0. (4.4.6)

While it is trivial to show that

uσσ(k) =
d0(k)√

(E0(k) − εk)2 + |d3(k)|2
(4.4.7)

and

vσ−σ(k) =
E0(k) − εk√

(E0(k) − εk)2 + |d3(k)|2
(4.4.8)

where

E0(k) =
√
εk + |d0(k)|2. (4.4.9)

E0(k) is, of course, of the same mathematical form as the spectrum of a singlet superconductor

in zero field. However, it is not correct to say that E0(k) is the spectrum of a singlet

superconductor in zero magnetic field as the value of d0(k) (although, importantly, not the value

of ε(k)) depends on |H| in general.

Substituting our expressions for the eigenvectors of the BdG into the self-consistency

condition (4.3.30) we find that the gap equation is

d0(k) = −1

4

∑

kσ

Uσ−σ(k)
d0(k)

E0(k)
tanh

(
E0(k) + σµBH

2kBT

)
. (4.4.10)

In zero field the gap equation regains its familiar BCS form [108]. However, we note that

surprisingly the field dependence of the gap only enters via the Fermi (tanh) term. This means

that when T = 0 the gap equation becomes
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d0(k) = −1

4

∑

kσ

Uσ−σ(k)
d0(k)

E0(k)
. (4.4.11)

which is independent of H.

We must now ask what this result means physically, as, thus far, we have considered the

gap equation purely as a mathematical exercise. The most obvious conclusion is that, at zero

temperature, the gap in independent of field strength. This is true but with one corollary, which

we will discuss below.

The gap equation is a non-linear integral equation. And, as such, has, in general, more than

one solution. (For example the trivial solution d0(k) = 0 is always a solution.) All that we have

actually shown is that for any given solution d0(k) is independent H at T = 0. To find the

ground state we must consider all possible solutions and calculate the free energy of each

solution. In zero field the gap equation can be derived by minimising the free energy with respect

to the superconducting order parameter [87]. This leads to the conclusion that the trivial solution

is only the ground state when no other solution exists. However, no such proof exists for a

superconductor in a finite field. This means that it is perfectly possible there to be a phase

transition from the superconducting to normal states as the magnetic field is increased at zero

temperature. Any such phase transition will be ‘perfectly’ first order in the sense that the order

parameter will jump from zero (above the critical field, HC) to some finite value (below HC) and

remain at that value for all |H| ≤ HC . The order parameter as a function of magnetic field

strength will therefore resemble a Heaviside step function.

Such a phase transition was first studied independently by Clogston [50] and

Chandrasekhar [48] who in fact tacitly assumed the independence what we have shown above.

According to the BCS theory, in the absence of a Meissner effect, the difference between the

normal state free energy, FN , and the free energy of the superconducting state, FSC , would be

FN − FSC =
1

2
χPH

2 (4.4.12)

at absolute zero. In the absence of any orbital paramagnetism5 the paramagnetic susceptibility,

χP , is given by

χP = 2µ2
BD(εF ). (4.4.13)

(Assuming a g factor of 2.) Where D(εF ) is the density of states at the Fermi level.

5Or if the orbital paramagnetism is the same in both the normal and superconducting states.
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BCS theory also states that in zero field the difference between the energy of the

superconducting state relative to the normal state is

FN − FSC =
1

2
D(εF )|∆(0)|2 (4.4.14)

where ∆(0) is the superconducting order parameter at T = 0. Equating (4.4.12) with (4.4.14) we

find that

(µBH)2 =
1

2
|∆(0)|2. (4.4.15)

Equation 4.4.15 clearly gives us a criterion for the field at which the free energy of the

normal state becomes lower than that of the superconducting state. The limiting field HP is given

by

HP =
|∆(0)|√

2µB

. (4.4.16)

This is known both of as Clogston–Chandrasekhar limiting and as Pauli-paramagnetic limiting.

Clogston–Chandrasekhar limiting clearly applies to all singlet states, but does not necessarily

apply to triplet states. In most superconducting materials HC2 < HP . Therefore, if a

superconductor has a large upper critical field (in comparison to the Clogston–Chandrasekhar

limit) this is good evidence for triplet superconductivity6.

6HC2 > HP is in no way proof of triplet superconductivity as other scenarios are possible. The most well known

of these in the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state [75, 119, 181]. In the BCS (singlet) state Cooper pairs

are formed not only with no net spin, but also with no net angular momentum as an electron in the state |k, σ〉 pairs with

and electron in the state | − k,−σ〉. In the FFLO state Cooper pairs are formed with finite momentum. In a exchange

field the Fermi surface splits into up and down parts. Thus the only way for a Cooper pair to form is for an electron in

the state |k + q/2, σ〉 to pair with an electron in the state | − k + q/2,−σ〉. Meaning that the Cooper pair will have

net momentum q.

We will not find FFLO in our calculations because our self consistency relation (4.3.30) does not allow for finite

momentum pairing. To find an FFLO state one must define the order parameter by

∆σσ′(k,k′) =
∑

q

−Uσσ′(k′ − q)〈ĉk+qσ ĉ−k+qσ′〉. (4.4.17)

and then minimise the free energy with respect to k to find the ground state solution. (Of course k = 0 corresponds

to BCS superconductivity.)

The FFLO state is believed to occur in the organic superconductors κ-(BEDT-TTF)2Cu(NCS)2 [196], λ-

(BETS)2FeCl4 [209] and λ-(BETS)2GaCl4 [203] (see Singleton and Mielke [195] for a review) and in (very clean

samples of) the high κ superconductors, UPd2Al3 [80], CeRu2 [155] and V3Si [76]. There has also been speculation
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4.4.2 Thermodynamic quantities of a singlet superconductor in a spin only

magnetic field

One of the great successes of BCS theory was that it correctly predicted the behaviour of

wide variety of measurable quantities. Some of the simplest quantities (either to calculate or to

measure) are the thermodynamic properties of a superconductor. We will now describe such

calculations for our model.

Specific heat

Recall from thermodynamics that the specific heat is given by

CV =
∂2

∂T 2
F = T

∂2S

∂T 2
. (4.4.18)

And for a Fermionic system

S = −kB

∑

kσ

[
fkσ ln fkσ +

(
1 − fkσ

)
ln
(
1 − fkσ

)]
. (4.4.19)

Hence we have

CV = −kBT
∑

kσ

∂

∂fkσ

[
fkσ ln fkσ +

(
1 − fkσ

)
ln
(
1 − fkσ

)]∂fkσ

∂T
. (4.4.20)

It is straightforward to show that

∂

∂fkσ

[
fkσ ln fkσ +

(
1 − fkσ

)
ln
(
1 − fkσ

)]
= −Ekσ

kBT
(4.4.21)

and

∂fkσ

∂T
= fkσ

(
1 − fkσ

)( Ekσ

kBT 2
− 1

kBT

∂Ekσ

∂T

)
. (4.4.22)

From (4.4.5) we have

∂Ekσ

∂T
=

1√
ε2k + |∆(k)|2

∂|∆(k)|2
∂T

. (4.4.23)

that an FFLO state may occur in 3He/4He mixtures [125], the rutheno-cuprate RuSr2GdCu2O8 [192] which is a layered

ferromagnetic superconductor and in ferromagnetic, superconductor hetrostructures [103, 112].

We can therefore view the FFLO state as, in a rather loose sense, an intermediate between the singlet and triplet states

as it has neither even or odd parity, but it can be expressed as a mixture of the two.
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So we have

CV =
∑

kσ

1

kBT 2
fkσ

(
1 − fkσ

)(
E2

kσ − 1

Ekσ − σµBH

∂|∆(k)|2
∂T

)
. (4.4.24)

Magnetisation

The magnetisation, M , of a singlet superconductor must come solely from the elementary

excitations, as the Cooper pairs are spin zero and therefore do not contribute to the magnetisation.

Thus the magnetisation is given by

M = µB

∑

k

(
fk↑ − fk↓

)
. (4.4.25)

For small H(= |H|)

∂fk0

∂E
' fk↑ − fk↓

2µB
(4.4.26)

where fk0 is the Fermi function of the zero field spectrum, Ek0 =
√
ε2k + |∆(k)|2.

Hence we have

M ' −2µ2
BH

∑

k

∂fk0

∂E
(4.4.27)

' −2µ2
BH

V

(2π3)

∫
dΩ

4π

∫
dk
∂fk0

∂E
(4.4.28)

' −2µ2
BH

V

(2π3)

∫
dΩ

4π

∫
dεD(εF )

∂fk0

∂E
(4.4.29)

= 2µBHD(εF )

∫
dΩ

4π

∫
dε
β

4
sech2(βEk0/2). (4.4.30)

where β = 1
kBT .

Magnetic susceptibility

The magnetic susceptibility, χ, is given by

χ =
∂M

∂H
. (4.4.31)

So for small H
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χsinglet = 2µBD(εF )

∫
dΩ

4π

∫
dε
β

4
sech2(βEk0/2). (4.4.32)

However, of more interest is the Yosida function (see section 3.9 for an introduction),

Y (T ). To calculate the Yosida function we must first calculate the normal state susceptibility.

The normal state energy in a magnetic field is given by

εkσ = εk − µBσH. (4.4.33)

Hence,

M =
∂Ω

∂H
= − 1

β

∑

kσ

∂

∂H
ln
(
1 + e−β(εkσ−µ)

)
. (4.4.34)

= − µBV

(2π)3

∑

σ

σ

∫
d3k

1

1 + eβ(εkσ−µ)
. (4.4.35)

At low temperatures we therefore have

M = −µBV

2π2

∑

σ

σ

∫ kFσ

0
dk k2 (4.4.36)

= −µBV

2π2

∑

σ

σ
k3

Fσ

3
. (4.4.37)

But

Nσ =
∑

k

nkσ =
V

(2π)3

∫
d3kΘ(|k| − kF ) =

V

π2

k3
F

6
. (4.4.38)

So

M = −µB

∑

σ

σNσ (4.4.39)

= −1

2
µB

(∫ εF↑

0
D(ε)dε−

∫ εF↓

0
D(ε)dε

)
(4.4.40)

' −1

2
µBD(εF )

∫ εF↑

εF↓

dε (4.4.41)

' µ2
BHD(εF ). (4.4.42)

Clearly then
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χN ' µ2
BD(εF ). (4.4.43)

Hence the Yosida function for a singlet superconductor in a weak magnetic field is

Y (T ) =

∫
dΩ

4π

∫
dε
β

4
sech2(βEk0/2). (4.4.44)

Free energy

The most important thermodynamic quantity to be able to evaluate is the free energy. Once

this is known all other thermodynamic quantities can be calculated by taking (numerical7)

derivatives with respect to the appropriate variable. To evaluate the free energy we must first

calculate the expectation value of the Hamiltonian. To facilitate this we express the Hamiltonian

(4.3.5) as

Ĥ = Ĥ0 + Ĥint + ĤH . (4.4.45)

Where

Ĥ0 =
∑

ijσ

tij ĉ
†
iσ ĉjσ, (4.4.46)

Ĥint =
1

2

∑

ijσσ′

Uijσσ′n̂iσn̂jσ′ , (4.4.47)

ĤH = µB

∑

iσσ′

ĉ†iσ(σσσ′ · H)ĉiσ. (4.4.48)

Which immediately gives

7In practice taking numerical derivative is a poor way to calculate thermodynamic variables as it is computationally

expensive and notoriously inaccurate.
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F = 〈Ĥ0〉 + 〈Ĥint〉 + 〈ĤH〉 − TS (4.4.49)

=
∑

kασ

εk

(
u∗ασ(−k)uασ(−k)fkσ + vασ(k)v∗ασ(k)

(
1 − fkσ

))

−1

2

∑

kk′αβσσ′

U(k − k′)
[
u∗ασ(−k)vβσ(k)fkσ + vασ(−k)u∗βσ(k)

(
1 − fkσ

)]

×
[
uασ′(−k′)v∗βσ′(k′)fk′σ′ + v∗ασ′(−k′)uβσ′(k′)

(
1 − fk′σ′

)]

+
∑

kαβσ

(
σαβ · H

)(
u∗ασ(k)uβσ(k)fkσ + vασ(k)v∗ασ(k)

(
1 − fkσ

))

−kBT
∑

kσ

[
fkσ ln fkσ +

(
1 − fkσ

)
ln
(
1 − fkσ

)]
(4.4.50)

4.5 Numerical solution of the singlet Bogoliubov–de Gennes

equations for a singlet superconductor in an exchange field

We now solve the spin-generalised BdG equations self consistently with a on site potential.

The self consistency condition demands that all solutions have even parity, that is that only

singlet solutions exist (and indeed only singlet solutions were found numerically). This means

that we could solve the special case of the singlet BdG (4.4.3, 4.4.4) (or indeed the singlet gap

equation (4.4.10)). However, we choose instead to solve the full spin-generalised BdG equations

(4.3.25) self consistently (4.3.30) as this allows us to check that the code, which we will make

extensive use of throughout this thesis, correctly reproduces the well tested results of BCS theory

for H = 0. The results in a finite exchange field are less well known so we report the results both

in the zero temperature and finite temperature cases.

4.5.1 The special case of zero field: comparison of self-consistent solution of the

spin-generalised BdG equations with the solution of the gap equation using

the Bessel function method

We calculated the zero field gap as a function of temperature using both the density of

states obtained by the Bessel function method given in appendix A.1 and by solving the spin

generalised BdG equations self consistently. The results from both calculations are shown in

figure 4.2. The two calculations are in excellent agreement and both reproduce the well known

[108] result of BCS theory that
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Figure 4.2: The gap of an s-wave superconductor in zero field as a function of temperature calcu-

lated (a) by solving the spin generalised BdG equations self consistently and (b) using the DOS

found from the Bessel function method.

|∆(0)|
kBT

= 1.76 (4.5.1)

where |∆(0)| is the magnitude of the gap at zero temperature. Figure 4.3 shows the calculated

heat capacity, as a function of temperature. This shows the expected (see table 3.1) ∼ e
−|∆(0)|

kBT

temperature dependence at low temperatures.

Near TC the order parameter and hence the gap, becomes small. This means that the

solution of the BdG equations takes much longer to converge, the accuracy of the numerical

solution is also somewhat questionable as the (relative) importance of numerical noise increases.

The standard BCS result for the specific heat anomaly,

CSC
V − CN

V

CN
V

= 1.43, (4.5.2)

can only be obtained by fitting the gap near TC to the behaviour of the gap over the whole range

of temperature.
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Figure 4.3: Low temperature heat capacity of a s-wave superconductor in zero field as a function

of temperature. Inset: logarithmic plot of the same data. The line shown, in both plots, is CV =

1.06e−∆(0)/T .

4.5.2 The special case of zero temperature: comparison of numerical results with

analytical results

The gap is plotted as a function of magnetic field strength in figure 4.4. We note that the

zero temperature gap is independent of magnetic field strength as was predicted in section 4.4.1.

In fact the order parameter does not go to zero when the Clogston–Chandrasekhar limiting field

(|H| > |∆(0)|√
2

, see section 4.4.1 for details) is exceed. However, at the Clogston–Chandrasekhar

limiting field the normal state free energy becomes lower than the superconducting free energy.

4.5.3 Finite fields and finite temperatures

We plot the gap over the full range of temperatures and fields for which it is finite and the

ground state solution (figure 4.4). We note that in a finite field the superconducting transition is

first order where as it is a second order phase transition in zero field. This means that we cannot

fit the low temperature gap in small fields (where the phase transition is only weakly first order)

and so we cannot calculate the specific heat anomaly accurately in a finite field. In figure 4.5 we

plot the transition temperature as a function of magnetic field.

In 4.6, 4.7 and 4.8 we show the low temperature behaviour of specific heat, magnetisation
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Figure 4.4: The gap as a function of magnetic field strength and temperature calculated by solving

the spin generalised BdG equations self consistently. The field strengths are (a) H = 0, (b)

H = 0.005t, (c) H = 0.01t, (d) H = 0.015t, (e) H = 0.02t, (f) H = 0.025t, (g) H = 0.03t, (h)

H = 0.035t, (i) H = 0.04t, (j) H = 0.045t, (k) H = 0.05t.

Figure 4.5: The phase diagram of an s-wave superconductor in a magnetic field calculated by

solving the spin generalised BdG equations self consistently.



4.5 Numerical solution of the singlet Bogoliubov–de Gennes equations for a singlet
superconductor in an exchange field 81

Figure 4.6: Logarithmic plot of the low temperature specific heat of an s-wave superconductor

in a magnetic field as a function of magnetic field strength. From bottom up the magnetic field

strengths are: 0, 0.0025t, 0.005t, 0.0075t, 0.01t and 0.0125t, 0.015t. The lines are fits to the data.

and magnetic susceptibility as functions of temperature and field. By fitting each of these to the

form

{CV ,M, χ} ∼ e
−∆eff

kBT (4.5.3)

thus we are able to plot the effective gap, ∆eff , as a function of magnetic field strength in figure

4.9. Thus we see that the effective gap ‘seen’ by thermodynamic functions of a s-wave

superconductor is given by

∆eff = ∆(0) − µB|H|. (4.5.4)

Finally we note that these results are independent of the direction of the magnetic field as

expected.
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Figure 4.7: Logarithmic plot of the low temperature magnetisation of an s-wave superconductor

in a magnetic field as a function of magnetic field strength. From bottom up the magnetic field

strengths are: 0.00125t, 0.00375t, 0.00625t, 0.0875t, 0.01125t, 0.01375t and 0.01625t. The lines

are fits to the data.

Figure 4.8: Logarithmic plot of the low temperature magnetic susceptibility of an s-wave su-

perconductor in a magnetic field as a function of magnetic field strength. From bottom up the

magnetic field strengths are: 0.0025t, 0.005t, 0.0075t, 0.01t and 0.0125t, 0.015t. The lines are

fits to the data.
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Figure 4.9: The effective gap of an s-wave superconductor as a function of magnetic field. As

calculated from specific heat (•), magnetisation (�), and magnetic susceptibility (�).

4.6 A microscopic model for a triplet superconductor in a magnetic

field

We will now consider the properties of a triplet superconductor in a magnetic field. We are

able to derive many of the quantities that we have derived for a singlet superconductor.

4.6.1 The generalisation of a theorem concerning eigenstates which correspond to

negative eigenvalues

Before we begin we will generalise a useful theorem due to de Gennes [56]. For a singlet

superconductor in zero field the BdG equations are


 εk d0(k)

d∗0(k) −εk




u(k)

v(k)


 = E(k)


u(k)

v(k)


 . (4.6.1)

De Gennes showed that if


u(k)

v(k)


 is the eigenvector corresponding to the eigenvalue E(k),
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then


−v∗(k)

u∗(k)


 is also an eigenvector and that the corresponding eigenvalue is −E(k). Clearly

these are then the only eigenstates of the BdG equations. This theorem is a direct consequence of

the fact that the Hartree–Fock–Gorkov Hamiltonian is diagonalised via a unitary transformation.

We will now extend this theorem to the spin generalised BdG equations in a magnetic

field. We begin by writing the BdG equations (4.3.25) in a pseudo-spinor notation:


 ξ(k) ∆

k

−∆∗
−k

−ξ∗(k)




uσ(k)

vσ(k)


 = Eσ(k)


uσ(k)

vσ(k)


 . (4.6.2)

Where

ξ(k) =


 εk + µBH3 µB(H1 − iH2)

µB(H1 + iH2) εk − µBH3


 , (4.6.3)

∆
k

=


∆↑↑(k) ∆↑↓(k)

∆↓↑(k) ∆↓↓(k)


 , (4.6.4)

uσ(k) =


u↑σ(k)

u↓σ(k)


 , (4.6.5)

and

vσ(k) =


v↑σ(k)

v↓σ(k)


 . (4.6.6)

Multiplying by −1, taking the complex conjugate, parity inverting and exchanging the rows of

equation 4.6.2 leads to


 ξ(−k) ∆(k)

−∆∗(−k) −ξ∗(−k)




u

∗
σ(−k)

v∗σ(−k)


 = −Eσ(−k)


u

∗
σ(−k)

v∗σ(−k)


 . (4.6.7)

But, Eσ(−k) and ξ(−k) are both even under parity inversion. So we arrive at


 ξ(k) ∆(k)

−∆∗(k) −ξ∗(−k)




u

∗
σ(−k)

v∗σ(−k)


 = −Eσ(k)


u

∗
σ(−k)

v∗σ(−k)


 . (4.6.8)

We have therefore shown that if


uσ(k)

vσ(k)


 is an eigenvector of the spin-generalised BdG
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Figure 4.10: The four branches of the singlet spectrum in a magnetic field. Inset, the zero field

limit where the two spin branches become degenerate. The branches are (a) the spectra for σ =↑,

(b) the spectra for σ =↓, (c) the normal state spectra in zero field and (d) the singlet spectrum for

H = 0.

equations in a magnetic field, with the corresponding eigenvalue Eσ(k) then,


u

∗
σ(−k)

v∗σ(−k)


 is also

an eigenvector and the corresponding eigenvalue is −Eσ(k). As σ can take two values (↑ or ↓)

we have identified all of the eigenstates.

This analysis holds for both triplet and singlet states. (For a singlet state with |H| = 0 it

clearly reduces to the theorem of de Gennes.) For a singlet superconductor in a magnetic field the

spectrum is given by (4.4.5). We plot the four branches of the singlet spectrum in figure 4.10 this

result is in agreement with the theorem derived above.
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4.6.2 The spectrum of a triplet superconductor in a magnetic field

By setting the singlet order parameter, d0(k), to zero we can write down the BdG

equations for a triplet superconductor in magnetic field,




εk + µBH3 µB(H1 − iH2) −d1(k) + id2(k) d3(k)

µB(H1 + iH2) εk − µBH3 d3(k) d1(k) + id2(k)

−d∗1(k) − id∗2(k) d∗3(k) −εk − µBH3 µB(−H1 − iH2)

d∗3(k) d∗1(k) − id∗2(k) µB(−H1 + iH2) −εk + µBH3







u↑σ(k)

u↓σ(k)

v↑σ(k)

v↓σ(k)




= Eσ(k)




u↑σ(k)

u↓σ(k)

v↑σ(k)

v↓σ(k)



. (4.6.9)

The eigenvalues of the BdG equations are given by the solutions of the characteristic equation

(
Eσ(k)2 + µ2

B|H|2 − εk

)2
− 4µ2

BEσ(k)|H|2

−d1(k)

{
2d∗1(k)

(
ε2k +H2

3 + E2
σ(k) −H2

1 +H2
2

)

−2id∗2(k)
(
2H3εk − 2iH1H2

)

+2d∗1(k)
(
− 2H1H3 + 2iH2εk

)}

+id2(k)

{
2d∗3(k)

(
2H3εk + 2iH1H2

)

−2id∗2(k)
(
ε2k +H2

3 − Eσ(k) +H2
1 +H2

2

)

+2d∗3(k)
(
− 2H1εk + 2iH2H3

)}

−2d3(k)

{
d∗1(k)

(
− 2H1H2 − 2iH2εk

)

−id∗2(k)
(
− 2H1εk − 2iH2H3

)

+d∗3(k)
(
ε2k − E2

σ(k) +H2
1 +H2

2 −H2
3

)}
= 0. (4.6.10)

Upon ‘spotting’ the relevant vector terms we find that
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(
Eσ(k)2 + µ2

B|H|2 − εk

)2
− 4µ2

BEσ(k)|H|2 − 2

{
|d|2

(
ε2k − E2

σ(k) + |H|2
)

−2iεkH ·
(
d(k) × d∗(k)

)
− 2
(
H · d(k)

)(
H · d∗(k)

)}
= 0.

(4.6.11)

On noting that |d(k)|4 − |d(k) · d∗(k)|2 = |d(k) × d∗(k)|2 we find that

Eσ(k) =

√
ε2k + µ2

B|H|2 + |d(k)|2 + σ
√

Λ(k) (4.6.12)

where

Λ(k) = |d(k) × d∗(k)|2 + 4ε2kµ
2
B|H|2 + 4µ2

B|H · d(k)|2 + 4iεkµBH · d(k) × d∗(k).

(4.6.13)

It should be noted that this does not assume a unitary order parameter8. Also in zero field we

clearly have the usual result for a triplet superconductor that

Eσ(k) =
√
ε2k + |d(k)|2 + σ|d(k) × d∗(k)|. (4.6.14)

4.6.3 Thermodynamic properties of a triplet superconductor in a magnetic field

As for the singlet case one can calculate thermodynamic properties for a triplet

superconductor. Below we examine the same case which we considered for the singlet case.

Specific heat

For example the specific heat is given by

CV = T
∂S

∂T
(4.6.15)

= −kBT
∂

∂T

∑

kσ

(fkσln(fkσ) + (1 − fkσ)ln(1 − fkσ)) (4.6.16)

=
∑

kσ

fkσ(1 − fkσ)

(
Eσ(k)2

kBT 2
+

1

kBT
Eσ(k)

∂

∂T
Eσ(k)

)
(4.6.17)

8A unitary state is any state for which d(k) × d∗(k) = 0. See section 3.9 for details.
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From (4.6.12) we have

∑

σ

Eσ(k)
∂

∂T
Eσ(k) = Eσ(k)

(
∂d(k)

∂T

∂

∂d(k)
+
∂d∗(k)

∂T

∂

∂d∗(k)
+
∂Λ(k)

∂T

∂

∂Λ(k)

)
Eσ(k)

(4.6.18)

=
∑

σ

(
d∗(k)

2

∂d(k)

∂T
+

d(k)

2

∂d∗(k)

∂T
+ σ

∂Λ(k)

∂T

)
(4.6.19)

=
1

2

∂

∂T
|d(k)|2. (4.6.20)

Hence

CV =
∑

kσ

fkσ(1 − fkσ)

kBT 2

(
Eσ(k)2 − T

2

d

dT
|d(k)|2

)
(4.6.21)

Magnetisation

The fact that the magnetic field only appears in the third term of the Hamiltonian greatly

simplifies the calculation of the magnetisation.

M =
∂F

∂H
(4.6.22)

=
∂〈Ĥ0〉
∂H

+
∂〈Ĥint〉
∂H

+
∂〈ĤH〉
∂H

+
∂S

∂H
(4.6.23)

=
∂〈ĤH〉
∂H

+
∂S

∂H
(4.6.24)

Assuming ∂S
∂H is small we have

M ' µB

∑

kαβ

〈ĉ†kασαβ ĉkβ〉 (4.6.25)

= µB

∑

k

(
u∗↑σ(k)u↓σ(k)fkσ + v↑σ(k)v∗↓σ(k)

(
1 − fkσ

)

+u∗↓σ(k)u↑σ(k)fkσ + v↓σ(k)v∗↑σ(k)
(
1 − fkσ

)
,

−iu∗↑σ(k)u↓σ(k)fkσ − iv↑σ(k)v∗↓σ(k)
(
1 − fkσ

)

+iu∗↓σ(k)u↑σ(k)fkσ + iv↓σ(k)v∗↑σ(k)
(
1 − fkσ

)
,

+u∗↑σ(k)u↑σ(k)fkσ + v↓σ(k)v∗↓σ(k)
(
1 − fkσ

)

−u∗↓σ(k)u↑σ(k)fkσ − v↓σ(k)v∗↑σ(k)
(
1 − fkσ

))
. (4.6.26)
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Note that here we have calculated the magnetisation vector because in many triplet systems the

direction of the applied field will often effect the magnetisation. Where as in the more isotropic

singlet system we calculated M = |M|.

Magnetic susceptibility

It is not clear how to calculate the susceptibility in the general case, as to take derivatives

of the magnetisation (equation 4.6.26) one must know how the self-consistent solution of the

BdG equations evolves with H. This means that in numerical calculations the best strategy is to

evaluate the susceptibility tensor (defined by Mα = χαβHβ) by taking numerical derivatives of

the magnetisation.

However, particularly for the inert phases, if one assumes a particular phase some

analytical progress can be made. Such results are reported in section 3.9, while for detailed

calculations the reader is referred to Leggett [123] or Mineev and Samokhin [154].

Free energy

The derivation of the free energy for a singlet superconductor (section 4.4.2) did not

actually make any assumptions about the parity of the superconducting order parameter.

Therefore equation 4.4.50 also holds for a triplet superconductor.

4.7 A few special cases

We conclude this chapter by examining a few special cases. We do this both because

making a few assumptions can yield some surprising results and aid our understanding and

because we can compare these exact results with our numerical calculations which will be

presented in later chapters.

4.7.1 d(k) parallel to H

For a triplet superconductor with H parallel9 to d(k) and z the BdG equations are

9As d(k) is a complex vector it is not immediately clear what saying d(k) is ‘parallel to’ or indeed ‘perpendicular

to’ a real vector means. (On the other hand these notions are clearly well defined between two complex three-vectors

in a six dimensional real space.) Rather than defining some complicated generalisation of parallel and perpendicular, in

this thesis we will restrict ourselves to the following meaning, which will clearly satisfy any reasonable generalisations

of parallel and perpendicular:
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


εk + µBH 0 0 d3(k)

0 εk − µBH d3(k) 0

0 d∗3(k) −ε−k − µBH 0

d∗3(k) 0 0 −ε−k + µBH







u↑σ(k)

u↓σ(k)

v↑σ(k)

v↓σ(k)




= Eσ(k)




u↑σ(k)

u↓σ(k)

v↑σ(k)

v↓σ(k)



. (4.7.1)

Hence, the eigenvalues are

Eσ(k) = E0(k) + σµBH (4.7.2)

where

E0(k) =
√
εk + |d3(k)|2. (4.7.3)

Which has the same form as the spectrum in zero field. The eigenvectors are

uσσ(k) =
d3(k)√

(E0(k) − εk)2 + |d3(k)|2
(4.7.4)

and

vσ−σ(k) =
E0(k) − εk√

(E0(k) − εk)2 + |d3(k)|2
. (4.7.5)

Substituting these into the self-consistency condition (4.3.30) we find that the gap equation

is

The complex vector c is parallel to the real vector r if and only if c× r = 0. This means that we can only speak of a

complex vector being parallel to a real vector if the complex vector can be written as the product of a real vector (which

must be parallel or antiparallel to r) and a complex phase. And hence we see that the notion of a complex vector being

antiparallel to a real vector is not well defined. Further many complex vectors exist that are not be parallel to any real

vector.

The complex vector c is perpendicular to the real vector r if and only if c · r = 0. Thus it is possible to construct

a complex vector which is perpendicular to only one distinct, non-trivial, real vector. (Where as all non-trivial real

vectors are perpendicular to two distinct non-trivial real vectors.)
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d3(k) = −1

4

∑

kσ

Uσ−σ(k)
d3(k)

E0(k)
tanh

(
E0(k) + σµBH

2kBT

)
(4.7.6)

At T = 0 this becomes

d3(k) = −1

4

∑

kσ

Uσ−σ(k)
d3(k)

E0(k)
. (4.7.7)

which is independent of H.

Hence we find that for this symmetry the zero temperature gap is independent of the

magnetic field strength. We also note that the gap equation has the same form as the singlet gap

equation (equation 4.4.10). This means that many of the features that are usually associated with

singlet superconductivity may be observed. In particular we may expect to see a

Clogston–Chandrasekhar limit. This makes qualitative sense as the we are considering the

Sz = 0 projection, 1√
2
(| ↑↓〉 + | ↓↑〉). We now see that in a spin only magnetic field the

important difference between pairing states, so far as many probes are concerned is not the

difference between singlet and triplet pairing, but the difference between opposite spin pairing

(OSP) states and equal spin pairing (ESP) states. An OSP state (e.g. a singlet state or the triplet

state considered in this section) is destroyed by the magnetic field as it separates the (|k, ↑〉,
| − k, ↓〉) states which are available for pairing in zero field. On the other hand ESP states are not

destroyed as the relevant states here (|k, σ〉, | − k, σ〉) are not torn apart by the magnetic field.

We will investigate this solution numerically in section 5.4.1.

4.7.2 d(k) parallel to x̂; H parallel to ẑ

The BdG equations in this case are




εk + µBH 0 −d1(k) 0

0 εk − µBH 0 d1(k)

−d∗1(k) 0 −ε−k − µBH 0

0 d∗1(k) 0 −ε−k + µBH







u↑σ(k)

u↓σ(k)

v↑σ(k)

v↓σ(k)




= Eσ(k)




u↑σ(k)

u↓σ(k)

v↑σ(k)

v↓σ(k)



.(4.7.8)

By separating into two 2 × 2 matrices we find that
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Eσ(k) =
√

(εk + σH)2 + |d(k)|2, (4.7.9)

uσσ(k) =
−σd1(k)√

(Eσ(k) − εk − σH)2 + |d(k)|2
, (4.7.10)

vσσ(k) =
Eσ(k) − εk − σH√

(Eσ(k) − εk − σH)2 + |d(k)|2
, (4.7.11)

uσσ(k) = vσσ(k) = 0. (4.7.12)

So we find that both the eigenvectors and eigenvalues have an explicit field dependence, this

means that the gap has a field dependence at all temperatures.

4.7.3 d(k) parallel to ẑ; H antiparallel to x̂

We could evaluate this problem directly as we did for the two cases above. However, for

this set of BdG equations this approach is rather difficult. It is simpler to simply rotate the

solution above.

Following the procedure outlined in section 3.3 we find that,

Eσ(k) =
√

(εk + σH)2 + |d(k)|2, (4.7.13)

u↑↑(k) = −u↓↑(k) =
d1(k)√

(E↑(k) − εk −H)2 + |d(k)|2
, (4.7.14)

u↑↓(k) = u↓↓(k) =
d1(k)√

(E↓(k) − εk +H)2 + |d(k)|2
, (4.7.15)

v↑↑(k) = −v↓↑(k) =
Eσ(k) − εk −H√

(E↑(k) − εk −H)2 + |d(k)|2
, (4.7.16)

v↑↓(k) = v↓↓(k) =
Eσ(k) − εk +H√

(E↑(k) − εk +H)2 + |d(k)|2
. (4.7.17)

So, once again we find that the eigenvectors and hence the order parameter are field dependent at

all temperatures. We therefore expect this type solution to strongly coupled to the magnetic field

and that this type of solution (Sz = ±1) will behave markedly differently from the Sz = 0

solution in a magnetic field. We investigate this type of solution numerically in section 5.4.2.



Chapter 5

Triplet superconductivity in Sr2RuO4

In this chapter we use our extended Hubbard model (derived in the proceeding chapter) to

study Sr2RuO4 - strontium ruthenate. We begin by reviewing the previous work on strontium

ruthenate. We then derive a Ginzburg–Landau theory from our microscopic model. After making

some reasonable assumptions about the nature of superconductivity in Sr2RuO4, we show that

the Ginzburg–Landau analysis allows only axial (A, A1 or A2) (triplet) superconducting

solutions. We then present numerical solutions of the microscopic model and explore the

exchange field dependence of the order parameter and energy gap in a one-band model of

Sr2RuO4. The numerical solutions show that the ground state is the A2. However, we speculate

that spin-orbit coupling may stabilise the A phase for fields aligned with the c-axis. We explore

heat capacity as a function of temperature and field strength and find quantitatively different

behaviours for the A and A2 phases. We then discuss the Clogston–Chandrasekhar like behaviour

of the A phase. Finally we speculate on the possibility of a bulk phase transition in Sr2RuO4 that

is analogous to the Freedericksz transition. The Freedericksz transition has previously only been

observed in superfluid 3He and charged liquid crystals in both of these systems the Freedericksz

transition is only observed in a confined geometry and a magnetic field.

Some of the results presented in this chapter have previously been published in reference

[172].

5.1 Some experimental and theoretical properties of Sr2RuO4

Frank Lichtenberg and coworkers at the IBM research laboratory in Zürich first begin to

study Sr2RuO4 (whose crystal structure is shown in figure 5.1) in the early nineties [216].

93
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Figure 5.1: The crystal structure strontium ruthenate (Sr2RuO4) is of the same type as the pro-

totypical perovskite K2NiF4. However, more importantly from out point of view Sr2RuO4 is

isostructural to La2−xBaxCuO4, the parent compound of the high temperature cuprate supercon-

ductors. In fact, to date, Sr2RuO4 is the only known perovskite superconductor which does not

contain copper. Taken from Maeno et al. [137].

Although other groups had previously studied Sr2RuO4, the IBM group where able to use the

floating zone technique [127] to grow higher quality crystals than had previously been possible.

Ostensibly this activity was motivated by the need for high quality substrates both for high

temperature superconducting devices (such as SNS heterostructures - S = superconductor, N =

normal metal) for the cuprate superconductor YBa2Cu3O7−δ (which has an excellent lattice

spacing match to Sr2RuO4) and as an alternative to Sr2TiO4 (which is a widely used substrate in

both the microelectronics industry and in fundamental research).

Given the huge interest in the cuprate superconductors it was natural to search for

superconductivity in Sr2RuO4, however the refrigerators at the IBM facility could not reach the

very lowest temperatures. But, Yoshi Maeno, who was then at Hiroshima University, was able to

cool Sr2RuO4 to well below 1K. At 0.93K a sudden drop in resistivity and a strong diamagnetic

signal in the a.c. susceptibility were observed [137], the crystal had begun to superconduct. With

the growth of better samples it soon became clear that the critical temperature of clean Sr2RuO4

is 1.5K [134].
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5.1.1 Normal state properties of Sr2RuO4

Given the structural and chemical similarity of Sr2RuO4 to the cuprates it would be natural

to assume that the nature of the many body problem in both systems would be broadly similar.

However, this does not appear to be the case. In the cuprates the normal state1 is not well

understood [41, 42], but the normal state of Sr2RuO4 has proved to be much simpler. As any

theory of superconductivity is greatly influenced by the normal state on which superconductivity

is built we will begin by examining the normal state of Sr2RuO4.

Sr2RuO4 is well described by Landau–Fermi liquid theory [140]. For example the low

temperature resistivity goes as T 2 in both the basal plane and along the c-axis [137] as is

predicted by Landau–Fermi liquid theory [168]. However, the magnitude of the resistivity in the

c-axis is about 550 times that in the basal plane [139] showing that we are dealing with a highly

two dimensional Fermi liquid. The low temperature, normal state, specific heat is of the usual

Fermi liquid form [140]

CV = γT + βT 3. (5.1.1)

Another indication of the two dimensional nature of Sr2RuO4 is the Kadowaki–Woods ratio,

A/γ2, where A is the coefficient of the T 2 term of the resistivity. For most materials the

Kadowaki–Woods ratio lies on one of two ‘universality’ lines: for heavy Fermion materials

A/γ2 ' a0 = 1.0 × 10−5, while for materials without such large mass renormalisation (for

example the transition metals) A/γ2 ' a0/25. For Sr2RuO4 the in plane Kadowaki–Woods ratio,

Aab/γ
2 = 0.3 − 0.5a0, is somewhere between the two universality curves, where as, along the

c-axis, the Kadowaki–Woods ratio, Ac/γ
2 = 280 − 500a0, severely deviates from universality.

The normal state magnetic susceptibility is high isotropic [140], suggesting that the Pauli term is

dominant - in line the predictions Landau–Fermi liquid theory.

The availability of high quality single crystals allowed spectacularly detailed de Haas–van

Alphen (dHvA) experiments to be performed on Sr2RuO4 [30, ?]. The Fermi surface observed in

the dHvA is in excellent agreement with (LDA) band structure calculations [147, 162]. The Fermi

surface has also been probed by angle resolved photoemission spectroscopy (ARPES). Initially

these experiments suggested that the γ sheet of the Fermi surface was an hole like sheet centred

on the Γ point [130, 220]. (Conversely, both band structure and dHvA conclude that the γ sheet is

electron like and centred on the X point.) However, later ARPES experiments appear to agree

1If it is really correct to call the non-superconducting state of the cuprates ‘normal’.
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with the conclusions drawn from the dHvA experiments and band structure calculations [54, 55].

The band structure and Fermiology of Sr2RuO4 is discussed in more detail in section 2.2.1.

There is ample evidence for strong correlations in Sr2RuO4. The mass enhancement (the

ratio of the effective mass as measured by specific heat to the effective mass found in band

structure calculations) is 3.6 [140]. This gives a measure of the mass renormalisation due to

many body effects. From dHvA the mass enhancement on individual bands can be found [133]

and is 3.4, 3.8 and 5.0 on the α, β and γ bands respectively. Renormalisation effects also give an

large enhancement to the Pauli spin susceptibility. The Pauli spin susceptibility as measured by

NMR is ∼ 5.4 times the value found in band structure calculations [99]. The same experiments

concluded that Sr2RuO4 is a Pauli paramagnet with an exchange enhancement factor ∼ 0.82. It is

useful to define the Wilson ratio,

RW =
1

3

(
πkB

µB

)2 χ0

γ
(5.1.2)

where χ0 is the Pauli spin susceptibility and γ is the linear (electronic) component of the specific

heat (see equation 5.1.1); the Wilson ratio is unity for the non-interacting Fermi gas. The Wilson

ratio for Sr2RuO4 is 1.36, which indicates that the enhancements in χ and γ have the same origin

[99].

It can therefore be seen from the experimental data that the normal state of Sr2RuO4 is a

quasi-two dimensional Fermi liquid which is composed of electrons in narrow bands (arising

from the Ru-4dxy, -4dxz and -4dyz orbitals hybridised with O-2p orbitals) in which electron

correlations play an important role.

5.1.2 The pairing symmetry of Sr2RuO4

The superconducting state of Sr2RuO4 is also very different from that of the cuprates. The

superconducting transition temperature of Sr2RuO4 is a rather modest 1.5 K compared to the

incredibly high transition temperatures (above 150 K in HgBa2CuO4+x [41]) observed in the

cuprates. It is well established that the order parameter in the cuprates is dx2−y2 [14]. We will

now review the constrains on the order parameter in Sr2RuO4.

In chapter 3 we noted that many anisotropic superconducting states, most notably the

ABM and BW triplet states, were discussed in relation to 3He before superfluidity had even been

observed in 3He. While theorist did not have this level of success in Sr2RuO4, Maurice Rice and

Manfred Sigrist did make a startlingly accurate prediction of the symmetry of the
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Γ J, Jz d(k)

Γ−
1 0, 0 xkx + yky

Γ−
2 1, 0 xky − ykx

Γ−
3 2,±2 xkx − yky

Γ−
4 2,±2 xky + ykx

Γ−
5 1,±1 z(kx ± iky)

Table 5.1: The possible p-wave states on a two dimensional square lattice, C4v, including splitting

due to spin-orbit coupling.

superconducting state [178] in 1995, when relatively little was known about the superconducting

state of Sr2RuO4 experimentally. On the basis of the normal state properties of Sr2RuO4 - in

particular the strong correlations, but also because the similarities of the normal state of

properties Sr2RuO4 of those of normal 3He, they predicted that Sr2RuO4 is a triplet

superconductor. Further support for this suggestion came from the large Hund’s rule coupling

[45] in Sr2IrO4 and the ferromagnetism [78] in SrRuO3
2. Rice and Sigrist analysed the

superconducting state in Sr2RuO4 on the basis of a two dimensional lattice, in which case there

are five distinct p-wave symmetry states which are detailed in table 5.1. In particular we note that

Γ−
1 is the 2D analogue of the BW state and Γ−

5 is the 2D analogue of the ABM state. Any of the

states in table 5.1 would be nodeless in Sr2RuO4 because of the cylindrical nature of the Fermi

surfaces. In 1997 Daniel Agterberg along with Rice and Sigrist suggested that the A phase is the

most likely state in Sr2RuO4 specifically they proposed the state

d(k) ≈ ẑ∆0(kx + iky). (5.1.3)

Early evidence for anisotropic pairing in Sr2RuO4 came from the strong suppression of the

superconducting critical temperature by non-magnetic impurities [134]. Impurity scattering tends

to average out the order parameter around the Fermi surface and therefore has a much weaker

effect on the transition temperature of an isotropic superconductor. Further an anisotropic s-wave

superconductor (i.e. an s-wave superconductor in which the magnitude of the gap varies around

2SrRuO3 and Sr2RuO4 are respectively the n = ∞ and n = 1 members of Ruddlesden–Popper the series of

strontium ruthenates, Srn+1RunO3n+1. The n = 2 member of the series, Sr3Ru2O7, has also been synthesised and

shows many interesting properties in particular it is thought to be a metamagnetic material with a quantum critical end

point [84, 153, 163].
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the Fermi surface) is much more weakly effected by this averaging than a gap in which the phase

varies around the Fermi surface. Thus a large reduction in TC due to non-magnetic impurities is

indicative of a finite angular momentum pairing state.

The first direct evidence for triplet pairing in Sr2RuO4 came from muon spin relaxation

(µSR). Luke et al. [131] observed the spontaneous appearance of an internal magnetic field, and

hence the spontaneous breaking of time reversal symmetry (TRS) below TC in Sr2RuO4. This

internal field is suppressed by the application of a small field (50 G) parallel to the c-axis. This

shows that the internal field is static on the microsecond timescale - as dynamic fields are only

decoupled by much larger fields [36]. Hence, TRS is either broken by the superconducting state

itself, or by a purely magnetic state which coincidentally appears at about 1.5K. To eliminate the

latter possibility Luke et al. also studied samples with a lower transition temperature, in these

samples the internal magnetic field appeared at the superconducting transition temperature,

indicating that it is indeed the superconducting state which breaks TRS. Any superconducting

state which breaks TRS must be twofold degenerate. Therefore the observation of broken TRS

effectively rules singlet superconductivity in Sr2RuO4 as singlet states cannot be degenerate in

the absence of multiple phase transitions, which are not observed in Sr2RuO4 (at least not in the

relevant region of the phases diagram for these experiments). However, as we have seen there are

degenerate triplet phases. Of the five possibilities detailed in table 5.1 the four 1D

representations, Γ−
1−4, do not break TRS. However, the 2D representation, Γ−

5 , is degenerate and

hence does break TRS. This means that the only two dimensional p-wave states compatible with

the µSR result are to the A, A1 and A2 phases.

Given this strong indication of ESP, it was important to measure the magnetic

susceptibility in the superconducting state and hence the Yosida function (described in section

3.6). This was first measured by Ishida et al. [100] via the 17O Knight shift and later by Duffy et

al. [60] using the more direct probe of neutron scattering. Both groups found that, for fields in

the basal plane, the spin susceptibility is unaltered by entering the superconducting state, i.e. that

Yab(T ) = 1. (5.1.4)

Neither group was able to measure the spin susceptibility for fields along the c-axis due to the

small HC2 in this direction. This result implies that the superconducting state consists of only

ESP states and in particular is consistent with either an A, A1 or A2 phase with d(k) parallel to

the c-axis (in the sense of parallel defined in section 4.7.1).

So, the µSR and magnetic susceptibility collectively point to a ESP state that breaks TRS.
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Experiment Behaviour Temperature range Reference

Specific heat CV ∝ T 2 T . 0.55TC [159]

Penetration depth λ(0) − λ(T ) ∝ T 2 T . 0.6TC [32]

Thermal conductivity κ ∝ T 2 T . 0.65TC [202, 102]

NMR (Ru spin-lattice relaxation rate) 1/T1 ∝ T 3 T . 0.28TC [100]

Ultrasonic attenuation α ∝ T 3 T . 0.6TC [146, 132]

Table 5.2: The low temperature behaviour of Sr2RuO4 as probed by various thermodynamic and

transport measurements.

The strongest candidates are the A, A1 and A2 phases because the two dimensional nature of

Sr2RuO4. Given the cylindrical nature of the Fermi surfaces (see section 2.2.1 and figure 2.2), the

A, A1 and A2 phases are all nodeless. As we saw in section 3.5, we would therefore expect to see

and exponential temperature dependence in many thermodynamic quantities at low T . The

measured low temperature dependence of several quantities is shown in table 5.2. All of these

experiments yield power laws which are consistent with line nodes and are hence inconsistent

with the nodeless gap of the order parameter suggested by Agterberg, Rice and Sigrist (5.1.3).

Theorists were now faced with the challenge of reconciling the observation of line nodes

with the requirement for ESP and broken TRS. However, for the cylindrical Fermi surface

geometry of Sr2RuO4 a complete group theoretic analysis of symmetry distinct pairing states

does not show any p-wave states which both break time-reversal symmetry and have line-nodes

[13]. This led several groups to consider f-wave scenarios [90, 82, 141]. Another possible

resolution to this dilemma has been developed in the orbital dependent pairing model of

Zhitomirsky and Rice [224] and in a related model by Litak et al. [129]. For different reasons

both groups proposed that the gap function is of the form

d(k) = ẑ∆γ(sin kx + i sin ky). (5.1.5)

on the dominant γ sheet of the Fermi surface, and of the form

d(k) = ẑ∆αβ

[
sin

(
kx

2

)
cos

(
ky

2

)
+ i sin

(
ky

2

)
cos

(
kx

2

)]
cos

(
ckz

2

)
(5.1.6)

on the α and β sheets. Both of these functions possess the same Eu symmetry, but correspond to

intra-plane and inter-plane pairing interactions respectively. This gap function has horizontal line
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Parameter In basal plane Along c-axis

Superconducting critical temperature TC (K) 1.5

Upper critical field µ0HC2(0) (T) 1.5 0.075

Clogston–Chandrasekhar limiting field µ0HP (0) (T) 0.0194

Lower critical field µ0HC1(0) (T) 1.0 ×10−3 5.0 ×10−3

Ginzburg–Landau coherence length ξ(0) (Å) 660 33

London penetration depth λ(0) (Å) 1.8 × 103 3.7 × 104

Ginzburg–Landau parameter κ(0) 55 2.7

Mean free path l(0) (Å) 2100

Table 5.3: Superconducting properties of Sr2RuO4 after Akima, NishiZaki and Maeno [7].

nodes at kz = ±π/c on the α and β sheets. These two scenarios can by sloganised as the choice

between braces (f-wave nodes) or belts (horizontal line nodes on the α and β sheets).

Comparison of the predictions of the belt and brace models with experiment reveals that the belt

model provide at better fit to the specfic heat near TC [159, 224, 129, 77], thermal conductivity

[129, 77, 142] and the penetration depth measurements [129, 113].

In a magnetic field Sr2RuO4 shows a number of unusual features. Firstly the vortex lattice

is square [180, 106] which agrees well with the predictions of a two-component Eu symmetry

Ginzburg-Landau theory [6, 91]. Secondly there is an anomalous second feature close to Hc2,

which only occurs when the field is aligned within 1o of the a-b plane (see figure 5.2). At the

present time the origin of this feature is uncertain. It may be a vortex lattice phase transition, or it

may correspond to a change in pairing symmetry with field, perhaps analogous to the double

superconducting transition in UPt3 (see below).

We conclude this section by listing some of the key properties of Sr2RuO4 in table 5.3.

Note that the upper critical field is larger than the Clogston–Chandrasekhar limit this is of course

an indication of triplet pairing in general and equal spin pairing in particular and that the

superconducting properties are highly anisotropic, as are the normal state properties.

5.1.3 Other triplet superconductors

In section 3.6 we discussed the prototypical triplet superfluid, 3He. However, there is now

evidence for triplet superconductivity in several other compounds. We will now briefly discuss

the evidence for triplet pairing in the heavy Fermion compound UPt3 and the organic
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Figure 5.2: Evidence for a second superconducting phase transition in Sr2RuO4 taken from Mao

et al. [143]. Hc2 is the upper critical field, H2 is the location of a second peak in the ac suscep-

tibility which is taken as evidence for a phase transition. HP3 another peak in the observed ac

susceptibility however, this is attributed to vortex synchronisation pinning [221]. The location of

the H2 is confirmed by specific heat measurements [159, 143].
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Figure 5.3: The superconducting phase diagram of UPt3. Left the experimental phase diagram

constructed from ultrasonic velocity measurements by Adenwalla et al. [5], right the theoretical

phase diagram also showing the symmetry of the gap taken from Brison et al. [38].

superconductors.

Perhaps the best known of the heavy Fermion compounds is UPt3. There is convincing

evidence for the existence of triplet superconductivity in UPt3 [38], not least of which is

observation of multiple superconducting phases (see figure 5.3). The symmetry of the phases has

been well characterised [185] within an E2u model.

Evidence for triplet superconductivity has also been found in several quasi one

dimensional organic superconductors. These belong to the Bechgaard salt family, (TMTSF)2X

where X = PF6 [49, 121], ClO4 [122]. In these materials the triplet superconductivity may be

reentrant, that is, when a magnetic field is applied the superconducting critical initially decreases,

but as the field grows even larger TC increases once again. This may be due to both triplet and

singlet solutions existing in zero field, but the singlet state having the lower energy. Thus when

the singlet state is suppressed by the magnetic field triplet superconductivity emerges rather than

the usual paramagnetic state.

We will not discuss the ferromagnetic superconductors here as these materials will be

discussed in some detail in chapter 6. But we do note here that there have been recent reports

[101] of the coexistence of triplet superconductivity and antiferromagnetism in UNi2Al3.
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5.1.4 The relevance of our model to Sr2RuO4

A spin triplet superconductor should show a number of interesting magnetic-field effects

which are direct consequences of the magnetic moment of the Cooper pairs. In particular, for

spin-triplet superconductors the Zeeman coupling between the quasiparticle spins an external

magnetic field need not lead to Clogston–Chandrasekhar limiting, unlike the case of spin-singlet

superconductors (see section 4.4.1). We may also expect possible phase transitions or symmetry

changes of the order parameter in a magnetic field, which are analogous to the transitions seen in

superfluid 3He and UPt3.

In this chapter we will focus specifically on the unique effects of the Cooper pair spin in a

triplet superconductor. Therefore we neglect the effects of the vector potential on the

quasiparticles, and instead focus solely on the Zeeman coupling of the quasiparticle spin to the

magnetic field. We can further justify this model by appealing to the strong Stoner enhancement

in Sr2RuO4 [147, 137], which means that the exchange field will be large in this material.

5.2 A Ginzburg–Landau theory of a quasi–two dimensional triplet

superconductor in a magnetic field

Before considering numerical solutions of the self consistent Bogoliubov–de Gennes

equations (derived in section 4.3), we will examine the possible results by deriving a

Ginzburg–Landau theory from our microscopic theory.

Consider a quasi–two dimensional system with two orbital degrees of freedom (which we

label x and y) and three spin degrees of freedom (henceforth labelled 1, 2 and 3.) Hence, instead

of the familiar 3 by 3 order parameter of 3He (described in section 3.8) this system is described

by the complex 2 by 3 matrix A, which is related to the microscopic order parameter, d(k), by




d1(k)

d2(k)

d3(k)


 =




A1x sin kx +A1y sin ky

A2x sin kx +A2y sin ky

A3x sin kx +A3y sin ky


 =

(
Ax Ay

)

sin kx

sin ky


 . (5.2.1)

We noted in chapter 3 that only five quartic terms (β1 − β5) are required to describe 3He [26]. In

a crystal two additional terms (β6 and β7) appear because the rotational symmetry of the crystal

is discrete, where as rotational symmetry is continuous in a fluid. Gradient terms can also be
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calculated [13, 6, 91], but we will not make use of these here. In zero field the condensation free

energy for a tetragonal crystal is given by [13]

FSC − FN = α(T − Tc)(|Ax|2 + |Ay|2) + β1(|Ax|2 + |Ay|2)2 + β2|Ax · Ax + Ay · Ay|2

+β3((Ax · A∗
y)

2 + (A∗
x · Ay)

2 + (A∗
x · Ax)2 + (A∗

y · Ay)
2)

+β4(2|Ax · A∗
y|2 + |Ax|4 + |Ay|4)

+β5(2|Ax · Ay|2 + |Ax · Ax|2 + |Ay · Ay|2)

+β6(|Ax · Ax|2 + |Ay · Ay|2) + β7(|Ax|4 + |Ay|4). (5.2.2)

In a finite magnetic field, to second order in A, the condensation free energy, FH, is

FH =
1

β

∑

iωn

∫
dk tr

(
G

0
(k,iωn)∆(k)G∗

0
(−k,iωn)∆†(−k)

)
, (5.2.3)

where,

G
0
(k,iωn) = (iωn + εk − µ+ µBσ · H)−1 (5.2.4)

and ωn are the Matsubara frequencies.

Thus to all orders in H

FH = − 1

β

∑

iωn

tr
∫
dk

(iωn − εk + µ+ µBσ · H)

[(iωn − εk + µ)2 − |H|2]

×(σ · Ax sin kx + σ · Ay sin ky)σ2
(iωn + εk − µ− µBσ

∗ · H)

[(iωn + εk − µ)2 − |H|2]
×(σ∗ · A∗

x sin kx + σ∗ · A∗
y sin ky)σ2. (5.2.5)

Hence,

FH = Axχ
xx

A∗
x + Axχ

xy
A∗

y + Ayχ
yx

A∗
y + Ayχ

yy
A∗

y, (5.2.6)

where,

χ
ij

=




χ11
ij χ21

ij χ31
ij

χ12
ij χ22

ij χ32
ij

χ13
ij χ23

ij χ33
ij


 , (5.2.7)
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and

χαβ
ij = − 1

β

∑

iωn

∫
dk sin ki sin kj (5.2.8)

×tr
(

(iωn − εk + µ+ µBσ · H)σασ2(iωn + εk − µ− µBσ
∗ · H)σ∗βσ2

[(iωn − εk + µ)2 − |H|2] [(iωn + εk − µ)2 − |H|2]

)
.

By x–y symmetry χxy = χyx = 0.

Some algebra then leads to

FH = (α0 + α2|H|2)(|Ax|2 + |Ay|2) + iα1H · (Ax × A∗
x + Ay × A∗

y)

−2α2(|H · Ax|2 + |H · Ay|2). (5.2.9)

Where,

α0 =
2

β

∑

iωn

∫
dk

sin2 kx

(
(εk − µ)2 + ω2

n

)
[
(iωn − εk + µ)2 − µ2

B|H|2
] [

(iωn + εk − µ)2 − µ2
B|H|2

] , (5.2.10)

α1 = −4µB

β

∑

iωn

∫
dk

sin2 kx(εk − µ)[
(iωn − εk + µ)2 − µ2

B|H|2
] [

(iωn + εk − µ)2 − µ2
B|H|2

]

(5.2.11)

and

α2 = −2µ2
B

β

∑

iωn

∫
dk

sin2 kx[
(iωn − εk + µ)2 − µ2

B|H|2
] [

(iωn + εk − µ)2 − µ2
B|H|2

] .

(5.2.12)

Clearly α0 reduces to α (5.2.2) in zero magnetic field, but the α1 and α2 terms do not have

analogues in the zero field Ginzburg–Landau expansion. It is reassuring to note the similarity

between these extra terms and the Hartree–Fock–Gorkov quasiparticle spectrum in a magnetic

field (equation 4.6.12). The fact that each term has an analogue in the other, independently

derived, formalism is confirmation that both procedures have been carried out correctly. As we

saw in chapter 3 the cross product of any complex vector with its complex conjugate is purely

imaginary so the square root of minus one before the α1 term in the expression for the free

energy is to be expected.
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As we have expanded in A, but not in H, the above expression for the free energy is valid

for small gaps at all field strengths. It is therefore valid close to Hc. But, note that, since we

assumed an exchange-only magnetic field we do not consider the vortex lattice here. Agterberg

and Heeb [6, 91] have discussed the vortex lattice using Ginzburg–Landau theory, but did not

include the Zeeman terms of equation 5.2.9.

In the Ginzburg–Landau formalism the superconducting phase transition occurs when the

quadratic terms go to zero. In a zero field this condition is simply

α(T − TC) = 0. (5.2.13)

In a finite spin only magnetic field the equivalent condition is that the matrix

α = αijAiA
∗
j (5.2.14)

has (at least) one zero eigenvalue, but no negative eigenvalues, where the indices i and j now run

over both orbital and spin degrees of freedom. In this case

α =


β 0

0 β


 , (5.2.15)

where,

β =




α0 + α2|H|2 − 2α2H
2
1 iα1H3 −iα1H2

−iα1H3 α0 + α2|H|2 − 2α2H
2
2 iα1H1

iα1H2 −iα1H1 α0 + α2|H|2 − 2α2H
2
3


 . (5.2.16)

Hence the condition for there being a zero eigenvalue of α is

(
α0 + α2|H|2 − 2α2H

2
1

) (
α0 + α2|H|2 − 2α2H

2
1

) (
α0 + α2|H|2 − 2α2H

2
1

)

−
(
α0 + α2|H|2 − 2α2H

2
1

)
α2

1H
2
1

(
α0 + α2|H|2 − 2α2H

2
2

)
α2

1H
2
2

−
(
α0 + α2|H|2 − 2α2H

2
3

)
α2

1H
2
2 = 0. (5.2.17)

This expression can be greatly simplified by choosing our coordinate system so that H lies

parallel to one of the axes. With, for example, H = (0, 0, H) we find

β =




α0 + α2H
2 iα1H 0

−iα1H α0 + α2H
2 0

0 0 α0 − α2H
2


 . (5.2.18)
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Which has at least one zero eigenvalue when

(
α0 − α2H

2
)((

α0 + α2H
2
)2 − α2

1H
2
)

= 0. (5.2.19)

The eigenvectors of α are




A1x

A2x

A3x

A1y

A2y

A3y




=




0

0

1

0

0

0




,




0

0

0

0

0

1




,




1

iκ

0

0

0

0




,




0

0

0

1

iκ

0




,




−iκ
1

0

0

0

0




and




0

0

0

−iκ
1

0




. (5.2.20)

Where κ is real. To second order in A, κ is given by

κ = − α1H

α0 + α2H2
(5.2.21)

Much recent work (see section 5.1.2) has suggested that Sr2RuO4 is likely to be in an state

analogous to the A phase of 3He. If the pairing interaction favours the A phase in zero magnetic

field there are three possible solutions in a magnetic field.

Ax = −iAy = (0, 0, 1) (5.2.22)

Ax = −iAy = (1,iκ, 0) (5.2.23)

Ax = −iAy = (−iκ, 1, 0) (5.2.24)

Equation 5.2.22 is the A phase with d(k) parallel to H. Equations 5.2.23 and 5.2.24 both

give an axial phase. In particular this axial phase is the A phase for κ = 0, A2 phase for

0 < |κ| < 1 and the A1 phase for |κ| = 1. For all values of κ solutions (5.2.23) and (5.2.24) have

d(k) perpendicular to H.

5.3 Numerical methods

To progress further we must resort to solving the self consistent Bogoliubov–de Gennes

equations numerically. That is we guess a ∆
k

and then find the eigenvalues, Eσ(k), and
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eigenvectors, uσ′σ(k) and vσ′σ(k), of the BdG equations. From these we then calculate ∆
k

via

the self-consistency condition (equation 4.3.30). If the calculated ∆
k

is the same as the initial

guess then we have a self-consistent solution, if not we take the calculated ∆
k

as the guess for

the next iteration and repeat the process until self-consistency is achieved.

5.3.1 A method for improving the speed of convergence in the self consistent

process

Self consistency can take many iterations to achieve. Therefore many schemes have be

invented to decrease the number of iterations before self-consistency. One of the most widely

used schemes involves guessing a mixture of the last two solutions, rather than simply the last

solution.

In this work we employed the following method to increase the speed with which a self

consistent solution is found: We define our measure of self consistency, Cαβ , by

Cαβ =
1

N

∑

k


1 −

∣∣∣∆(n−1)
αβ (k)

∣∣∣
∣∣∣∆(n)

αβ (k)
∣∣∣


 , (5.3.1)

where ∆
(n)
αβ (k) is the value of ∆αβ(k) calculated from the nth iteration and N is the number of

k-space grid points. Clearly, Cn
αβ = 1 ∀ α, β implies that self consistency has been reached. For

small Cn
αβ , Cn

αβ is a linear function ∆αβ(k) as is shown in figure 5.4. Therefore when Cn
αβ is

sufficiently small we can easily extrapolate to find self consistent value of ∆αβ(k). (Of course it

is important to check that the extrapolated value of ∆αβ(k) is indeed a self consistent value.)

However, we also found that this extrapolation can be useful even for large values of Cn
αβ ,

although it does not immediately yield the self consistent value of ∆αβ(k), it can greatly

decrease the number of iterations required to achieve self consistency. In practice we found the

best method was calculate a few iterations from an informed initial guess and then perform an

extrapolation. Thereafter the best strategy is to extrapolate after every second iteration. Of

course, it is also important to start some calculations from a random point in phase space (so as to

search for other solutions). In this case more integrations must be performed before the first

extrapolation is performed.
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Figure 5.4: The behaviour of Cαβ , a measure of self consistency, near self consistency.

5.3.2 An overview of parallel computing and MPI

As high speed computing is, by its very nature, a rapidly evolving subject, few traditional

texts are available. Those that do exist [4] are usually written with the computer scientist in mind.

I have found that for the physicist, who should be motivated primarily by the need for quick,

reliable code, the best resources are web based [157, 149, 67]. Of course the longevity of these

resources remains to be seen, but it seems reasonable to assume that they will be available for as

long as the MPI (Message Passing Interface) routines retain their current popularity.

There are two common strategies for producing high speed computers. The first method is

essentially brute force. By removing communication bottlenecks, increasing the clock speed,

optimising the instruction set, miniaturising components so that they dissipate less heat and/or

increasing the size of the processor cache so that memory has to be accessed less frequently,

processor speed can be increased. This allows more instructions to be carried out per unit time,

thence programs are executed more quickly.

A more modern approach is to use many computers to share the workload. This is known

as parallel computing3. Parallel computing is attractive for many reasons. The main reason

however is financial. Moore’s law states that the speed of commercially available processors

3In contrast, computing on a single processor is known as serial computing.
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doubles ever eighteen months, whilst, in the same time, the cost an equivalent processor halves4.

This means that if one invests a large amount of money in buying a very fast serial computer

within a few years it will be no faster than the average desktop. It is found that one can get the

same speed, at least cost and crucially with greater ease of upgradability form a parallel computer.

An important factor with any computer program is portability of code. That is, the ability

of the code to be compiled and run on many different machines. For this reason the MPI routines

where devised. These routines consist of a set C functions, headers, types and so forth. (There is

also a functionally equivalent and syntactically alike Fortran implementation of MPI.) The MPI

routines handle the communications between processors in a uniform manor, thus insuring

portability of code and freeing the programmer from concerns over the vagaries processor

communication systems.

In the MPI model of parallel computing each processor or node is on an equal footing.

(Although in practice it is often more convenient to work in a client-server paradigm.) The nodes

can communicate with each other by one to one communication (for example the SEND or

RECEIVE commands), one to many communication (for example the SCATTER command),

many to one communication (for example the GATHER command) or many to many

communication (an example of which is the ALLGATHER command).

Many of the numerical results presented in this thesis have been calculated using the

‘Brunel’ ‘Beowulf’5 machine which belongs to the LACMS [114] group of the University of

Bristol mathematics department. This was done to increase speed with which the code executed

as the program is extremely slow. The code executed slowly because it solves a self consistently a

non-linear integral equation over a large number of reciprocal space points. The fact that the code

allows for both triplet and singlet solutions means that four such self consistent numbers must be

calculated. Also, as we are considering a large phase (H, T ) space the code must be run for many

different state variables. Therefore we parallelised our code by spreading the k-space integration

across several machines. The speed up is, to a good approximation, linear in the number of

processors used (i.e. two process take about half the time to find a self consistent solution that it

takes a single processor to perform the same task).

4Incidentally, in the same time the processor size halves, this means that Moore’s law is likely to fail soon as it

requires processers to be on the atomic scale by about 2020. Processors on this scale will be dominated by quantum

effects, and thus ‘classical’ computing will cease to function. However, there is currently much effort being invested in

inventing the ‘quantum computer’, which will (it is hoped) use these quantum effects to increase the speed with which

many algorithms are executed.
5Beowulf machines are an off the shelf Linux implementation parallel computing [29].



5.4 Numerical results 111

5.4 Numerical results

We now present self consistent solutions of the BdG equations with parameters chosen to

correspond to Sr2RuO4. To this end we fit the hopping integral and site energy to the

experimentally determined Fermi surface of the γ-sheet of Sr2RuO4 (as is described in section

2.2.1). The interaction potential is restricted to include nearest neighbour terms only and chosen

to give the experimentally observed critical temperature (1.5K).

5.4.1 d(k) parallel to H

We begin by studying the first solution of the Ginzburg–Landau theory (5.2.22), in which

d(k) is parallel to H. In zero field we find that the ground state of the model is a triplet state

analogous to the A phase of 3He, specifically the state is

d = ∆0(sin kx + i sin ky)ê. (5.4.1)

Here we have defined the vector order parameter to point in the ê direction. In zero field,

all directions in spin space are degenerate if spin–orbit coupling is neglected. When an external

field is applied the ground state has d(k) perpendicular to the field, as we will show below.

However, in Sr2RuO4 the order parameter is thought to be aligned with the c-axis [138], by

spin-orbit coupling [158]. Therefore despite the low critical field along the c-axis, Sr2RuO4

presents us with the possibility of studying a triplet superconductor with a magnetic field parallel

to the order parameter. It is therefore interesting to predict what would be observed in such

experiments. To do this we simply discard any axial solutions with d(k) not parallel to H. We

then consider the remaining self consistent solution of the BdG equation with the lowest free

energy.

A field applied parallel to d(k) does not cause a change in the symmetry of the gap. It

follows that at zero temperature the gap is independent of magnetic field strength (see section

4.7.1). At finite temperature, a field applied parallel to the order parameter causes a change in the

magnitude of the gap (see figure 5.5.) It should be noted that the gap is nodeless but has minima

at kx = 0 and ky = 0.

We calculate the heat capacity, magnetisation and magnetic susceptibility as functions of

temperature and field strength. For an isotropic, nodeless gap in zero field it is well known [154]
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(a) (b)

(c) (d)

Figure 5.5: (a)The Fermi surface and the gap at T/TC = 0.5 with (b) µBH/kBTC = 0, (c)

µBH/kBTC = 0.5, (d) µBH/kBTC = 0.9
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that these properties behave as

Cv,M, χ ∼ exp

(
− ∆

kBT

)
. (5.4.2)

We find that for an anisotropic, nodeless, p-wave gap the thermodynamics have the same

form, even in the presence of a magnetic field (see inset figure 5.6) We therefore define the

effective gap, ∆eff ‘seen’ by the thermodynamic functions as

Cv,M, χ ∼ exp

(
−∆eff

kBT

)
. (5.4.3)

We find that ∆eff is the mean gap at the Fermi surface, |d(kF)| in zero field and that ∆eff is a

linear function of magnetic field strength (see figure 5.6.) That is to say that

∆eff = |d(kF)| − µB|H|. (5.4.4)

With the field in this orientation a Clogston–Chandrasekhar limit is observed as the

superconducting state vanishes when ∆eff = 0. (This is confirmation of our prediction in section

4.7.1). This is of course to be expected as we are considering spin one Cooper pairs in the Sz = 0

projection.

5.4.2 d(k) perpendicular to H

Recall that the ground state of the model in zero field is

d = ∆0(sin kx + i sin ky)ê (5.4.5)

(see figure 5.7a). We will now examine the numerical solutions of the full BdG equations

corresponding to the second solution of the Ginzburg–Landau theory (5.2.23) and (5.2.24). We

find this solution (d(k) · H = 0) to be the ground state of our model in a magnetic field. We also

find that the symmetry of this state is A2, that is

d = ∆0(sin kx + i sin ky)(1,iκ, 0). (5.4.6)

where κ is a real function of temperature and field strength (figure 5.7b,c). Physically this

corresponds to a disparity in the number of the spin 1 Cooper pairs in the Sz = 1 and Sz = −1

projections, with no pairing in the Sz = 0 projection.

In 3He as the field and temperature increase κ increases until κ = 1. This is the A1 phase

which is the ground state of 3He near to TC in finite fields. The A1 phase has order parameter
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Figure 5.6: ∆eff (normalised to |d(kF)| at T = H = 0) as a function of magnetic field parallel to

d(k) extrapolated from heat capacity (circles), magnetisation (squares) and magnetic susceptibil-

ity (diamonds). The line is |d(kF)| −µBH . Inset - Logarithmic plot of heat capacity with inverse

temperature at various fields. From the bottom up: H = 0 T, 0.28 T, 0.42 T, 0.71 T, 0.85 T, 1.13 T,

1.41 T, 1.76 T, 2.12 T, 2.47 T and 2.82 T.
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(a) (b)

(c) (d)

Figure 5.7: The Fermi surface (circles), spin up gap (crosses) and the spin down gap (squares). In

the (a) A phase (T = H = 0), (b) the A2 phase (T = 0, H = 1.4 T), (c) the A2 phase with a

larger κ (T = 1.8 K, H = 1.4 T) and (d) the A1phase - not observed.
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Figure 5.8: ∆eff (normalised to |d(kF)| at T = H = 0)) as a function of H perpendicular to

d(k) (solid line) extrapolated from heat capacity. For comparison we plot ∆eff for H parallel to

d(k) (dashed line).

d = ∆0(sin kx + i sin ky)(1,i, 0) (5.4.7)

and corresponds to all of the (ESP) Cooper pairs aligning themselves in a single direction either

parallel or antiparallel to the magnetic field. (figure 5.7d). At no point in the range of fields and

temperatures that we have examined do we find that the A1 phase is the ground state of our

model. (Although we cannot definitely rule the A1 as we have not carried out an extensive search

for it.) If such a transition does occur then it is certainly well above the experimentally observed

upper critical field. This is in agreement with experiment as no A1 phase has been observed to

date.

Due to the nodeless gap in the A2 phase the specific heat has an exponential temperature

dependence. Hence we can calculate the effective gap for this field orientation (figure 5.8.) We

find a linear field dependence in low fields but its dependence is much weaker than for d(k)

parallel to H and there is an upturn in large fields. There is known to be a qualitative change in

heat capacity in this field orientation (see figure 5.2 and section 5.1.2). It remains to be seen if

these are related.

In this orientation the spin susceptibility does not drop to zero as temperature goes to zero

because we are dealing with the Sz = ±1 projections of the spin one Cooper pairs (this is
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explained in more detail in 3.9). The calculated Yosida function (defined as the ratio of

susceptibility of the superconducting state to that of the normal state) is shown in figure 5.9. The

most surprising feature of this calculation is the high temperature behaviour. At low temperatures

the Yosida function tends to unity as expected. However, near the critical temperature the

susceptibility changes from its low temperature value and hence the Yosida function in no longer

unity. This may be an interesting, experimentally testable effect, but, it is also possible that it is

attributable to numerical error. Near the critical temperature the gap is rather small. To calculate

the susceptibility we must take numerical derivatives of the magnetisation, which depends of the

magnitude of the gap. Thus the errors inherent to the process of taking numerical derivatives are

likely to be most pronounced near the critical temperature.

We also note that the largest field considered in figure 5.9 is 2.82T, almost twice the upper

critical temperature of Sr2RuO4 for field parallel to the c-axis (c.f. table 5.3). Of course, we did

not expect to accurately predict the critical field of Sr2RuO4 as we have not included the effects

of orbital currents (which determine HC2). In figure 5.10 we plot the critical temperature for this

configuration as a function of magnetic field strength. The increase in critical temperature is

reminiscent of the behaviour of 3He, however unlike 3He we do not observe an A1 phase. It

should be noted that we have not carried out a systematic search for the A1 phase and that near

TC numerical noise once again hamperers the correct identification of the phase. On the other

hand it is quite simple to see that the only the A1 phase is likely exist for very large fields as the

normal state will be entirely spin polarised. The A1 phase is indeed observed, even at zero

temperature, in calculations for such unphysically large fields.

5.4.3 The Freedericksz transition

To understand the Freedericksz transition we must first take a brief detour into the world of

liquid crystals.

Most organic molecules, particularly aromatic molecules, are diamagnetic. For example, a

magnetic field applied perpendicular to the plane of a benzene ring causes a current flow around

the ring. However, if the field is applied in the plane of the benzene molecule then no current is

induced. A current flowing raises the total energy, therefore in a magnetic field benzene

molecules tend to align themselves so that the magnetic field lies in the plane of the ring.

Many liquid crystals form nematic phases [57]. This can occur if the molecules have a

rod-like or disk-like geometry. In the nematic phase the long axes of the molecules align

themselves in some direction, this direction is known as the nematic director, n. However, the
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Figure 5.9: The Yosida function for H parallel to d(k) as a function of temperature and magnetic

field strength. The curves correspond, from the top down, to the magnetic field strengths H =

0.035 T, 0.18 T, 0.31 T, 0.49 T, 0.78 T, 0.91 T, 1.06 T, 1.19 T, 1.34 T, 1.59 T, 1.94 T, 2.29 T, and

2,64 T. Inset: the magnetisation of the superconducting state with H parallel to d(k) as a function

of temperature and magnetic field strength. The curves correspond, from the top down, to the

magnetic field strengths H = 0 T, 0.07 T, 0.14 T, 0.28 T, 0.42 T, 0.56 T, 0.71 T, 0.85 T, 0.99 T,

1.13 T, 1.27 T, 1.41 T, 1.76 T, 2.12 T, 2.48 T and 2.82 T.
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Figure 5.10: The superconducting critical temperature for H parallel to d(k) as a function of

magnetic field strength.

centres of gravity of the molecules have no long range order in the nematic phase. In the bulk, the

free energy is degenerate with respect to the direction of the nematic director. However, in a

confined geometry the orientation of the nematic director is determined by guiding effects due to

the walls of the container and thus an ‘easy axis’ is defined. (Whether the easy axis is parallel or

antiparallel to the wall of the container depends on the fine details of the interaction between the

molecules and the wall.)

Typical nematogenic molecules contain aromatic rings with the plane of the benzene ring

along long axis of the molecule. Thus, in the nematic phase, n, is parallel to the plane of the

aromatic rings. This means that when a magnetic field, H, is applied to the bulk nematic phase

the rotational symmetry is broken and the liquid crystal aligns itself so the n is parallel to H.

In a confined geometry if a magnetic field is applied parallel to the easy axis, then the term

of the free energy caused by the interactions between the liquid crystals and the container and the

diamagnetic term of the free energy are both minimised by the same orientation of n. On the

other hand, if the field is applied perpendicular to the easy axis, then there is a conflict as we

cannot minimise both of the energy scales simultaneously whilst remaining in a bulk nematic

phase. The simplest case to describe this effect in detail for is the slab geometry where the

container consists of two infinite parallel planes and is thus described by a single parameter, L,
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the separation of the planes. For large L the forces from the walls are small compared with the

magnetic forces thence the nematic director aligns itself with the magnetic field (this clearly gives

the correct behaviour as L→ ∞ and we regain the bulk case). For small L and small |H| the

guiding effects of the container dominate and the nematic director aligns itself with the easy axis.

For small L and large |H| the ground state is with n aligned with H in most of the sample but

aligned with the easy axis in a thin layer near the walls. Thus the usual symmetry of the nematic

phase is broken. Clearly at a certain field strength, HF , (which is, in general, a function of L)

there will be a phase transition between the small |H| phase and the large |H| configuration. This

is known as the Freedericksz (also sometimes spelt Frederiks) transition. HF can be calculated

straightforwardly. This, and other aspects of the Freedericksz transition, are described in

de Gennes and Prost’s well known book on liquid crystals [57].

The Freedericksz transition in 3He

A transition analogous to the Freedericksz transition (which, for brevities sake, we will

also refer to as the Freedericksz transition) has been widely studied in 3He.

In bulk 3He in a magnetic field the ground state is with d(k) perpendicular to H. However,

in the axial (A, A1 and A2) phases, there is also a second vector quantity associated with the

orbital ferromagnetism due to broken TRS. Taking the A phase as an example, we can write the

order parameter as

d(k) = ∆0d̂
(
k̂ · m̂ + ik̂ · n̂

)
. (5.4.8)

We can therefore define a vector, l̂, by

l̂ = m̂ × n̂. (5.4.9)

The orbital magnetic moment of the A phase is therefore in the direction l̂.

In the bulk the ground state is d(k) is parallel to l̂ due to dipole coupling. In a slab

geometry the ground state is l̂ normal to the wall. This is easily understood semiclassically. If

one visualises the 3He Cooper pair as a diatomic molecule rotating about l̂ the orbital motion of

the Cooper pair will be restricted by the wall unless l̂ is normal to the wall. In fact more

rigourous arguments [213] reach the same conclusion. On the other hand we have already seen

(section 3.6) that, in bulk, the ground state of the axial phases in a magnetic field is d(k)
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Figure 5.11: The phase diagram of 3He confined in a slab geometry as a function of H and L,

taken from Vollhardt and Wölfle [213].

perpendicular to H. Thus in a slab geometry with a magnetic field normal to the walls we have

three competing energy scales, only two of which can be minimised simultaneously.

For large L (and hence in the bulk) we have l̂ ‖d(k) ‖H as the guiding forces of the walls

are the weakest. For small L and small |H| we have l̂ ‖d(k) ⊥ H as the magnetic forces are

weakest. While, for small L and large |H| we have l̂ ⊥ d(k) ‖H as dipole coupling is weaker

than the other forces. Thus for small L at the field HF , which clearly depends on L, we have a

Freedericksz transition as we change from l̂ ‖d(k) to l̂ ⊥ d(k) (see figure 5.11). The

Freedericksz transition in 3He is well reviewed in Vollhardt and Wölfle [213].

Is there a Freedericksz transition in Sr2RuO4?

In this chapter we investigated two triplet solutions. We saw that d(k) perpendicular to H

had a lower energy than d(k) parallel to H. However in Sr2RuO4 it is likely that spin-orbit

coupling ‘pins’ d(k) to the crystallographic c-axis [138, 158]. Therefore, for fields applied along

the c-axis, spin-orbit coupling would impose an energy penalty for d(k) ⊥ H. This means that,

at least for small fields, the ground state would be d(k)‖H. If, for larger fields the ground state is

d(k) ⊥ H, then we would have a transition analogous to the Freedericksz transition. But, unlike

perviously known examples, this transition is in a bulk material.

We have also noted (table 5.3) that HC2 is much smaller when the field when the field is
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applied along the c-axis than when the field is in the basal plane. Clearly, much of this is due to

the intrinsic anisotropy in Sr2RuO4 which is reflected in its normal state properties. The

additional effect of spin-orbit coupling clearly cannot be calculated from the theory presented

here, however one might speculate that spin-orbit coupling and the notable differences between

the d(k)‖H and d(k) ⊥ H states also contributes to this anisotropy.

Finally, we note that the differences in the thermodynamic properties in a magnetic field of

the d(k)‖H and d(k) ⊥ H states should allow for a clear experimental check of the suggestion

that d(k) is ‘pinned’ to the c-axis. If this turns out to be the case Sr2RuO4 will provide us with a

unique opportunity to study the d(k)‖H in a bulk material.

5.5 Conclusions

We investigated the order parameter of Sr2RuO4 in an exchange-only magnetic field. A

Ginzburg–Landau symmetry analysis implied two possibilities: either an axial (A, A1 or A2)

phase with d(k) perpendicular to the magnetic field or an A phase with d(k) parallel to the

magnetic field. We explored the exchange field dependence of the order parameter and energy

gap in a one-band model of Sr2RuO4 via the self consistent solution of the BdG equations. These

numerical solutions showed no A1 phase for physically reasonable field strengths and also no A

phase perpendicular to H. Of the remaining possible phases (A with d(k) ‖ H and A2 with

d(k) ⊥ H) the A2 phase is lower in free energy. We investigated the behaviour of the heat

capacity as a function of both field and temperature for both of these solutions. We have shown

that the variation of the exponential cutoff below TC as a function of H is quantitatively and

qualitatively different for these two solutions. This makes heat capacity an excellent experimental

probe of the symmetry state in a magnetic field.

We did not include the effect of spin-orbit coupling which could change the ground state

for particular orientations of the magnetic field (particularly with H parallel to the c-axis of the

crystal.) However, we did observe that the inclusion of such an effect (or indeed any effect which

favours the alignment of d(k) with the crystallographic c-axis) could lead to a Freedericksz

transition in strontium ruthenate.



Chapter 6

The ferromagnetic superconductor

ZrZn2

In this chapter we apply our extended Hubbard model (derived in chapter 4) to the

ferromagnetic superconductor ZrZn2. However, as will be seen from the brief review that begins

this chapter rather little is known about the superconducting state of this material. Further, the

superconducting transition temperature in the limit of no impurity scattering (the clean limit),

TSC0, is not known. We therefore attempt to extrapolate the transition temperature from the

Abrikosov–Gorkov formula and both residual resistivity and de Haas-van Alphen experiments.

We generalise our Ginzburg–Landau theory from two dimensions (chapter 5) to three dimensions.

We then derive gap equations for arbitrary non-unitary states in zero exchange splitting and equal

spin pairing (ESP) states (including non-unitary ESP states) in the presence of exchange splitting

from our microscopic Hamiltonian. We show that these two formalisms are identical in the only

limit in which the should be, that of zero exchange splitting and no opposite spin pairing (OSP).

We then solve linearised versions of our gap equations for a tight binding fit chosen to give the

DOS found in first principles electronic structure calculations for ZrZn2 [183] and an effective,

nearest neighbour, pairwise, attractive interaction chosen to give the clean transition temperature

found in our analysis of the residual resistivity experiments. We include the effects of

non-magnetic impurity scattering and compare our results with experiments performed on ZrZn2.

123
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6.1 Some experimental and theoretical properties of ZrZn2

In the previous chapter we saw that there is an extensive literature of strontium ruthenate

which was discovered to superconduct some eight years ago and has been the focus of much

attention ever since. This is in no small part due to the availability of many high quality samples

which allowed the unusual nature of the superconducting state to be studied in a wide variety of

high quality experiments. Conversely, ZrZn2 has not yet been studied so widely. Of course this is

mainly because superconductivity was first observed in ZrZn2 only last year [166]. However,

there were predictions, discussed below, that superconductivity would be the ground state of

ZrZn2 - and several groups [53, 170] looked for superconductivity in ZrZn2 many years before

the phenomena was eventually observed. The fact that they did not observe superconductivity

implies that superconductivity in ZrZn2 is easily destroyed by disorder, this is, as we saw the

previous chapter, strong evidence for unconventional superconductivity.

6.1.1 The normal state properties of ZrZn2

ZrZn2 crystalises in the C15 Laves phase crystal structure shown in figure 6.1. Bruno,

Ginatempo and Staunton [40] showed that the density of states at the Fermi level, D(εF ), is

dominated by the zirconium atoms with the contribution density of states due to the zinc atoms

being about 0.6 Ry below the Fermi level. However, the presence of the zinc does substantially

alter D(εF ) as they play the role of empty spheres which change the crystal structure of the

zirconium. In fact, the density of states in the region of the Fermi level calculated for zirconium

in a diamond structure with the appropriate lattice spacing for ZrZn2 is remarkably similar to that

of ZrZn2 itself.

In the normal state, at ambient pressure, the resistivity of ZrZn2 shows a T 2 temperature

dependence [190]. This is consistent with the predictions of Fermi liquid theory. However, under

pressure, but still in the normal state, this power law changes [85] to T 1.6 near PC which has

been attributed to the influence of spin waves. (The critical pressure, PC ∼ 21 kbar, above which

ferromagnetism is not observed in any temperature range will be discussed further below.) (The

ferromagnetic region also shows a T 1.6 behaviour, consistent with magnons.)
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Figure 6.1: The C15 Laves phase crystal structure of ZrZn2. The zirconium atoms (larger spheres)

form a tetrahedrally coordinated diamond structure with the zinc atoms (smaller spheres) forming

a network of interconnecting tetrahedra. Taken from the crystal lattice structure website [47].

6.1.2 The properties of ZrZn2 in its ferromagnetic state

In ambient pressure ZrZn2 is a ferromagnet with a Curie temperature1 of 28.5 K

[166, 208, 165]. The Curie temperature falls approximately linearly with applied pressure [208]

and ferromagnetism is not observed a above the critical pressure, PC ≈ 21 kbar. Some authors

[85] have claimed that TFM ∝ (PC −P )3/4, although other data does not seem to agree with this

[166, 167, 215]. In any case the theory we present here is not strongly effected by either scenario

and so we will, for simplicities sake assume TFM ∝ PC − P in what follows as the differences

between the two behaviours is rather small except very close to PC . The most unusual magnetic

property of ZrZn2 is that, although a field of 0.05 T is enough to form a single magnetic domain,

the ordered moment is unsaturated up to 35 T [166, 211]. In contrast, the ordered moment of the

prototypical ferromagnets iron, cobalt and nickel is only weakly effected by the application of a

magnetic field once a single domain has been formed [19].

ZrZn2 appears to be a rare example of a Stoner ferromagnet. The exchange splitting is

clearly resolved in de Haas-van Alphen experiments [219] and band structure calculations (also

presented in reference [219]) are in excellent agreement with these experiments. The calculated

moment (0.18 µB) is also in excellent agreement with the observed moment (0.17 µB). Both the

Curie temperature and low temperature magnetisation are linear functions of pressure [53].

Hence the low temperature magnetisation is a linear function of TFM , in line with the predictions

1The fact that the Curie temperature and the superconducting critical temperature are both traditionally denoted TC

can, of course, lead to some confusion. Therefore in this chapter we will label the Curie temperature TFM and the

superconducting critical temperature TSC .
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Figure 6.2: The Fermi surface of ZrZn2 calculated from the LDA by Giles Santi and coworkers

[219]. The left hand side of each figure shows the sheet for the majority spin state (↑) and the right

hand side of each figure shows the fermi surface for the minority spin state (↓).

of the Stoner model.

The calculated Fermi surface (shown in figure 6.2) of ZrZn2 shows four (spin split) sheets

[194, 219]. The three smallest have been observed in dHvA experiments. The largest sheet (band

29 in the notation of reference [183] which we adopt throughout this chapter) of course has the

biggest orbits and is thus the most difficult to resolve - but the calculations indicate that band 29

contributes ∼ 50% of D(εF ) [183] so, unfortunately, the experimental determination of the

Fermi surface of this system is incomplete.
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6.1.3 Predictions of superconductivity in ZrZn2

One reason that there has been long standing interest in ZrZn2 is the prediction that

superconductivity would be observed near the critical pressure.

In the 1970s several authors [120, 68, 126] considered the possibility of paramagnon

induced p-wave pairing in nearly ferromagnetic metals. The scenario considered was that of a

paramagnetic metal at very low temperatures which undergoes a transition to a ferromagnetic

state as the strength of the exchange interaction is increased. It was found that as the exchange

interaction is increased in such nearly ferromagnetic systems the superconducting transition

temperature reaches a maximum and then drops to zero as the ferromagnetic transition is

reached. Leggett pointed out [124] that for P ≥ PC ZrZn2 is an example of just such a nearly

ferromagnetic metal. This led to much interest in the superconducting properties of ZrZn2

[66, 69, 17, 53].

However, the prediction which sparked the most interest was that of Fay and Appel [70] in

1980 that paramagnons could also mediate superconductivity in the ferromagnetic state. Fay and

Appel calculated the transition temperature of an ESP state (specifically the A1 state) as a

function of a Hubbard-type exchange interaction parameter, I = UD(εF ), in for both a nearly

ferromagnetic metal (I . 1) and a weak ferromagnet (I & 1). They found that paramagnons can

mediate superconductivity on both sides of the ferromagnetic transition. The superconducting

transition temperature on the ferromagnetic side of transition increases as the exchange

interaction is decreased until it reaches a maximum and then falls to zero when I = 1 (at the

transition to the paramagnetic state).

Fay and Appel performed calculations, assuming a spherical Fermi surface, for parameters

suitable to ZrZn2. On the basis of this model they predicted that ZrZn2 would superconduct with

TSC ∼ 1 K at ambient pressure. This transition would be near the maximum TSC , so the

transition temperature would then drop as P → PC . For P > PC Fay and Appel predicted that

TSC(P ) would rise to a maximum before falling again. They also speculated, on the basis of the

superconductivity observed in elemental zirconium and zinc, that for P � PC a s-wave state

would emerge because of the suppression of spin waves away from the ferromagnetic transition.2

2In fact Fay and Appel are rather confusing on where the maximum TSC lies as a function of pressure. For example

at one point in their paper they claim that ‘the maximum of T 1
C [that is TSC in the p-wave channel] for ZrZn2 seems to

lie near zero external pressure.’ While later on the predict that ‘the progression of states that might be observed in clean

ZrZn2 at very low (probably < 0.5 K) temperature as the pressure is increased from zero to P � PC [is] itinerant

ferromagnetism, itinerant ferromagnetism plus p-state pairing, paramagnetic p-wave pairing, and paramagnetic s-wave
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The calculation of the superconducting critical temperature in the paramagnetic state from Fay

and Appel’s McMillan formalism is in reasonable agreement with numerical solutions of the

Eliashberg equations [126] for this region, although the magnitude of TSC is somewhat smaller in

the McMillan formalism.

6.1.4 The properties of ZrZn2 in its superconducting state

Very little is known about the superconducting state of ZrZn2. Indeed to the best of our

knowledge only two groups have reported of the observation of superconductivity in ZrZn2

[166, 219]. Only Pfleiderer et al. [166] have studied the dependence of TSC on pressure (see

figure 6.3). They found that the transition temperature decreases linearly with applied pressure

below 18 kbar and that the sample did not superconduct (they where able to go as cold as 15 mK)

for P = 22 kbar > PC . However, they did not report any results for pressures in the range 18

kbar < P < 22 kbar. It should also be noted that the resistivity in the sample used did not fall all

the way to zero (although a drop of > 35% was observed: see inset figure 6.3) this must call into

doubt the quality of the sample. In particular one might question whether the entire sample or

merely certain regions become superconducting. Clearer evidence for superconductivity was

observed in both the imaginary and real parts of the a.c. susceptibility. The drops in resistivity

and the real (reactive) part of the a.c. susceptibility and the increase in the imaginary (lossive)

part of the a.c. susceptibility all begin at 0.3 K and consistently determine TSC . However, the

superconducting critical temperature has now been raised to 0.6 K [219]. In section 6.2 we will

predict the further extent to which TSC could be increased by growing cleaner crystals. Another

puzzle is that to date no specific heat anomaly has been observed in ZrZn2.

6.1.5 Theories of superconductivity in ZrZn2: post experiment

Since the discovery of superconductivity in ZrZn2 the calculations discussed in section

6.1.3 have been revisited. In particular several workers have revisited the calculations of Fay and

Appel [70] to attempt to explain the fact that superconductivity has not been observed in the

paramagnetic state.

Santi, Dugdale and Jarlborg [183] revisited Fay and Appel’s calculations. However, Santi

et al. began by performing ab initio band structure calculations for ZrZn2. These band structure

pairing.’ However, it is clear from the quoted numerical results and the discussion that the maximum in TSC does

actually lie near ambient pressure.
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Figure 6.3: The phase diagram of ZrZn2 taken from Pfleiderer et al. [166]. Inset: resistivity as a

function of temperature, note that, in this sample, the resistivity does not drop to zero.

calculations where then used to calculate both the electron-phonon coupling constant, λph, and

the spin fluctuation coupling constant, λL,T
sf , for both longitudinal (L) and transverse (T ) spin

waves in both the s and p channels. On the basis of these calculations Santi et al. predicted ESP

p-wave superconductivity in the ferromagnetic state with a critical temperature of order 1 K.

However, they also predicted p-wave pairing in the paramagnetic state with a higher critical

temperature. In light of previous speculation of s-wave pairing at very high pressures Santi et al.

studied their coupling constants at a lattice spacing of a = 13.17 a.u. (equivalent to 160 kbar

pressure) and found even at such extreme pressures the conditions would not be favourable for

phonon mediated, s-wave superconductivity.

We have now seen that the model of Fay and Appel and Santi et al. gives a reasonable

order of magnitude for the superconducting transition temperature in the ferromagnetic state.

However, the description of superconductivity in the paramagnetic state from this model is

clearly contradicted by the experimental facts. Kirkpatrick and coworkers [110, 109] attempted to

resolve this problem by arguing that in the ferromagnetic state spin waves couple of the

longitudinal susceptibility and thus contribute a mode-mode coupling term which has no analog

in the paramagnetic phase. They showed that this can lead to a superconducting critical



130 The ferromagnetic superconductor ZrZn2

temperature that is fifty times larger in the ferromagnetic state than it is in the paramagnetic state.

However, they did not report the order of magnitude of the critical temperatures in their

calculations and their model is based on the Heisenberg model which is not appropriate for

ZrZn2.

At this early stage in the study of ZrZn2 phenomenological models are probably more

useful solutions of exact Hamiltonians for (at least) two reasons: (i) The calculation of TSC is

notoriously difficult even for phonon mediated superconductivity, which is much better

understood than the spin fluctuation mediated superconductivity which has been studied thus far.

(ii) We do not yet have any understanding of the nature of the superconducting state in ZrZn2. As

we have seen in the case of Sr2RuO4 (chapter 5), the best way to interpret the results of the kind

of experiments which can determine the nature of the superconducting state (see sections 3.5 and

5.1.2 for examples of such experiments) is via comparison with phenomenological models.

One such phenomenological model has been proposed by Walker and Samokhin [215]

who studied a Landau theory for the magnetic state and a Ginzburg–Landau theory for the

superconducting state simultaneously. This theory led them to conclude that the superconducting

critical temperature, as a function of pressure, is given by

TSC(P ) = T0 + T ∗ 1
2 (TFM (P ) − TSC(P ))

1
2 . (6.1.1)

This theory then has the great virtue of making a clear, potentially falsifiable, prediction.

However, it also requires that T0, the superconducting critical temperature in the paramagnetic

state, is very small and that the enhancement in TSC by the exchange field is extremely large i.e.

that T ∗ � T0. It is rather hard to see how this condition might come about.

Samokhin and Walker [182] also conducted a group theoretic analysis of the possible

superconducting states in the ferromagnetic phase of ZrZn2. This led to the conclusion that if

‘spin-orbit coupling is weak then superconductivity should appear only on one of the sheets of

the Fermi surface.’ (This also assumes that the effect interband scattering is weak, which is

probably reasonable given the high sample purity required to observe superconductivity in the

first place.) If this is the case then band 29 is the most likely candidate as it contributes ∼ 50% of

the density of states at the Fermi level [183]. The group theoretic analysis also shows that nodal

structure depends on the strongly direction of the magnetisation density, M. Combining this

analysis with their Ginzburg–Landau theory Samokhin and Walker suggest that the for M ‖ [001]

ZrZn2 will have nodes along the line kx = ky = 0, while for M ‖ [111] ZrZn2 will have nodes

along the line kx = ky = kz .
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Singh and Mazin [194] have also raised the possibility of an FFLO state in ZrZn2. (The

FFLO state is discussed in a footnote in section 4.4.1.) However, this seems unlikely in view of

the calculations of Santi et al. which indicate that OSP (opposite spin pairing) pairing is not

favoured even a very high pressures. Further, the FFLO state is destroyed by fields only

moderately larger than the Clogston–Chandrasekhar limiting field and therefore seems not to be

the superconducting state found in ZrZn2. Of course a third possibility also exists, namely that

the superconducting states contains both ESP and OSP states, for example the B2 phase, which

after all is observed in 3He in weak magnetic fields (see section 3.9). However, the B2 phase is

destroyed by fields larger than the Clogston–Chandrasekhar limiting field and would therefore

appear to be ruled out in ZrZn2.

6.1.6 Other ferromagnetic superconductors

The phrase ‘magnetic superconductor’ has been widely used in the history of physics. But

in this chapter we are interested in only a small subset of the materials which have been called

magnetic superconductors. Firstly we are interested in ferromagnetism, we will therefore not

discuss at length the cuprates or heavy fermion materials like CePd2Si2 and CeIn3 which are

superconductors on the border of antiferromagnetism and are thought to be magnetically

mediated [145]. It is interesting to note however, that for the two heavy Fermion superconductors

the maximum in TSC occurs at PC (see figures 6.4 and 6.5), which is, of course the reverse of the

situation in ZrZn2. In the cuprates the control parameter is charge carrier concentration rather

than pressure, rather than the usual chemical doping which has the side effect of distorting the

lattice), further the strange pseudogap region lies between the superconducting and

antiferromagnetic regions. Neither will we discuss at length materials where different electrons

are involved in the magnetism and the superconductivity. Examples of this include the

ruthenocuprates (RuSr2RECu2O8, where RE = rare earth) in which it appears that electrons in the

copper-oxygen planes superconduct, whilst the ferromagnetism arises from the

ruthenium-oxygen planes [71] and borocarbines (RENi2B2C) in which antiferromagnetism arises

in the RE-C sheets and superconductivity occurs in the separating slabs of Ni2B2 [44].

Ferromagnetism and superconductivity also occurs in non-layered systems such as ErRh4B4

[197] and HoMo6S8 [144]. In these systems superconductivity appears at the upper critical

temperature TC1 but at then disappears at the (lower) critical temperature TC2. Below TC2 a

sinusoidally modulated ferromagnetic phase exists. The interested reader can find a nice (but in

view of recent developments, slightly outdated) reviews of these other ‘magnetic
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Figure 6.4: The phase diagram of CePd2Si2 taken from Mathur et al. [145]. Note that here the

maximum in TSC is at the critical pressure, unlike the situation in the ferromagnetic superconduc-

tors.

superconductors’ in references [197, 144].

We now focus on systems in which the same electrons are simultaneously involved in both

superconductivity and ferromagnetism. Other than ZrZn2 only two examples of ferromagnetic

superconductors in which the electrons are responsible for both superconductivity and

ferromagnetism and both phenomena appear concurrently are currently known; they are UGe2

and URhGe.

The phase diagram of UGe2 (shown in figure 6.6) is not dissimilar to that of ZrZn2. UGe2

is a ferromagnet with a Curie temperature of 54 K at ambient pressure. With applied pressure the

Curie temperature decreases (although not linearly as in ZrZn2). Ferromagnetism is not observed

above the critical pressure of 16 kbar. Further, muon spin relaxation experiments [218] show that

the critical dynamics are consistent with the Heisenberg model.

Superconductivity is not observed at abient pressure in UGe2, but appears at 10 kbar [98].

As a function of pressure, the superconducting critical temperature rises to a maximum at 12 kbar

and then falls to zero again at approximately the critical pressure. Much interest [167] was

provoked by the discovery of a second magnetic transition at the temperature Tx ∼ 24 K which

has now been observed by a number of probes including a.c. magnetic susceptibility [156],
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Figure 6.5: The phase diagram of CeIn3 taken from Mathur et al. [145]. Note that the maximum

in TSC is at the critical pressure, as in CePd2Si2.

Figure 6.6: The phase diagram of UGe2 taken from Aoki et al. [16].
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thermal expansion [210], heat capacity [204] and magnetometery [164]. Tx falls with applied

pressure and disappears at the pressure Px ∼ 12.5 kbar. The fact that Px corresponds to

maximum in TSC led to speculation about the role of quantum critical points (QCPs). However, it

was found that both magnetic transitions in UGe2 are first order [164] which rules out the QCP

scenarios as they require a second order transition [70, 110, 109]. The nature of the state below

Tx is not known, although we should note that neutron scattering experiments found no evidence

of modulated phases (e.g. charge density waves or spin density waves) below Tx [107]. De

Haas–van Alphen experiments [205] indicate that a discontinuous change in the Fermi surface

topology may occur in the region of PC , which is consistent with the observation of a first order

phase transition. The results of the de Haas–van Alphen experiments also suggest that Tx is

unlikely to correspond to the formation of a modulated phase as no change in the nesting

properties of the Fermi surface occur at the relevant pressure. On the other hand a new frequency

is observed at 12.2 kbar (∼ Px), which the authors (tentatively) attribute to a large hole surface

shrinking and splitting in two. This seems to be the only clue about the origin of the ‘x’ transition

at present.

In a magnetic field UGe2 shows several unusual features. Near the pressure which gives

the maximum TSC the upper critical field, HC2 & 3 T [98], is large in comparison to TSC . If one

assumes that UGe2 is a weak coupling superconductor then this indicates that HC2 > HP , the

Clogston–Chandrasekhar limiting field. The pressure dependence of the upper critical field is

high anisotropic and in certain field orientations UGe2 shows reentrant superconductivity [191].

At ambient pressure URhGe is a ferromagnet with a Curie temperature of 9.5 K. In

polycrystalline samples clear signs of a superconducting transition at TSC ∼ 250 mK are

observed in resistivity, a.c. susceptibility, heat capacity (including an anomaly) and

magnetisation [15]. The superconducting state is highly sensitive to disorder while the Curie

temperature is relatively insensitive to impurities, indicating that the superconducting state is

probably unconventional. At low temperatures HC2 & 0.71 T > HP , the (weak coupling)

Clogston–Chandrasekhar limiting field [15], which indicates that the pairing state is probably

triplet (although again FFLO states are not ruled out). It may be that rhodium effectively applies

chemical pressure as the U-U bond length in URhGe (3.5 Å) is approximately the same as the

bond length in UGe2 under 12 kbar of pressure, where the maximum TSC is observed.
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6.1.7 The relevance of our model to ZrZn2

In light of the fact that superconductivity has not been observed in the paramagnetic state

of ZrZn2 models other than variants of that proposed by Fay and Appel should be considered.

Our extended Hubbard model (see chapter 4) is in fact probably more suited to ZrZn2 than

Sr2RuO4 as the Zeeman term is more important in a ferromagnet than it is for an external

magnetic field. We make the substitution Exc = −µBH. We choose this sign convention so that

↑ electrons are the majority spin and thus avoid any potential confusion. We will use our model to

consider the effect of the variation of pressure on the superconducting state via the pressure

dependence of the exchange splitting. Thus we consider a effective, nearest neighbour, pairwise,

attractive potential that is independent of pressure.

Our model is clearly not relevant to UGe2 because it is a Heisenberg ferromagnet. (Of

course the converse is true in that the Stoner ferromagnetism of ZrZn2 rules out the model of

Kirkpatrick et al. [110].)

6.2 The critical temperature of ZrZn2 in the presence of disorder

Given that our formalism does not have the facility of handling disorder we need to know

what the critical temperature of clean ZrZn2 is. Unfortunately the lack of data makes this

somewhat speculative at best. However, the order of magnitude of the calculation should at least

be accurate.

6.2.1 The Abrikosov–Gorkov formula

Disorder will only have a pair breaking influence if it destroys the coherence of the

condensate. In an s-wave superconductor magnetic impurities lower the critical temperature as

they destroy the coherence of the OSP Cooper pairs. However, non-magnetic impurities have

only a very weak effect on the critical temperature via the changes they cause in the density of

states at the Fermi level, D(εF ).

In an unconventional superconductor (by which, in this context, we mean a superconductor

in which the order parameter has any symmetry of than s-wave) the phase of order parameter

varies around the Brillouin zone. Therefore scattering form non-magnetic impurities destroys the

coherence of the orbital part of the pair wavefunction and thus lowers TSC .

Abrikosov and Gorkov [2] derived an expression for the critical temperature of an s-wave
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superconductor in the presence of magnetic impurities. This was then recast in the correct form

for an unconventional superconductor in the presence of non-magnetic impurities by Larkin

[118]. It turns out that both formalisms have the same mathematical form.

Larkin considered isotropic scattering from non-magnetic impurities in the Born

approximation. In this case the normal part of the self-energy has the form [154]

Σ1,αβ(ωn) = Σ(ωn)δαβ =
1

2πD(εF )τtr

∫
dk

(2π)3
G(k, ωn)δαβ , (6.2.1)

and the anomalous part of the self energy is given part

Σ2,αβ(ωn) =
1

2πD(εF )τtr

∫
dk

(2π)3
Fαβ(k, ωn), (6.2.2)

where τtr is the quasiparticle lifetime (given by equation 6.2.33, we discuss why this particular

lifetime is the relevant quantity is section 6.2.3). The Gorkov equations3 are then

(iωn − ε(k) − Σ(ωn))G(k, ωn)δαβ + ∆αγ(k)F†
γβ(k, ωn) = δαβ (6.2.3)

(iωn + ε(k) − Σ(ωn))F†
αβ(k, ωn) + ∆†

αβ(k)G(k, ωn) = 0 (6.2.4)

(iωn − ε(k) − Σ(ωn))Fαβ(k, ωn) + ∆αβ(k)G(−k,−ωn) = 0 (6.2.5)

Hence,

G(k, ωn) = − iω̃n + ε(k)

ω̃2
n + ε(k)2 + ∆2(k)

(6.2.6)

Fαβ(k, ωn) = − ∆αβ(k)

ω̃2
n + ε(k)2 + ∆2(k)

, (6.2.7)

where,

iω̃n = iωn − Σ(ωn), (6.2.8)

∆2(k) =





1
2 tr
(
∆

k
∆

k

)
unitary phases

∆
k
∆

k

[(
|d̂(k)|2I + i

(
d̂(k) × d̂(k)

)
· σ
)]−1

non-unitary phases
(6.2.9)

3The Gorkov equations are equivalent of BdG equations but written in Green’s function notation. As we no not

make extensive use of these in this work we refer the reader to references [154] and [193], both of which give excellent

introductions to the Gorkov equations in the context of spin-generalised pairing. Also, note that in equations 6.2.3,

6.2.4 and 6.2.5 we use the Einstein summation notation for repeated spin indices.
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and d̂(k) ≡ d(k)
|d(k)| .

Assuming that there is symmetry between electrons and holes (6.2.1) and (6.2.6) give

Σ(ωn) = −iω̃n

2τtr

∫
dΩ

4π

1√
ω̃2

n + ∆2(k)
. (6.2.10)

The self consistent solution of equations ?? and 6.2.10 depends on the symmetry of the gap

however, regardless of the gap symmetry near TSC ∆(k) → 0 and we have

Σ(ωn) = − i

2τtr
sgn (ωn) (6.2.11)

as one would expect for a normal metal.

Thus near TSC the anomalous Green’s functions are given by

Fαβ(k, ωn) = − ∆αβ(k)

(ωn + sgn(ωn)/2τtr)
2 + ε(k)2

. (6.2.12)

In Green’s function notation the self-consistency equation (4.3.30) is

∆αβ(k) = T
∑

n

∑

k′

Uαβ(k − k′)Fαβ(k − k′, ωn). (6.2.13)

Hence we find that

∆αβ(k) = πD(εF )T
∑

n

sgn(ωn)

ωn + sgn(ωn)/2τtr

∫
dΩ′

4π
Uαβ(k − k′)∆αβ(k′). (6.2.14)

Taking

Uαβ(k − k′) =





V δαβ for εF − εc ≤ ~|k|2/2m∗, ~|k′|2/2m∗ ≤ εF + εc

0 otherwise
(6.2.15)

We find that

1 = πD(εF )V T
∑

n

sgn(ωn)

ωn + sgn(ωn)/2τtr
(6.2.16)

= 2πD(εF )V T
∑

n≥0

1

ωn
+ 2πD(εF )V T

∑

n≥0

(
sgn(ωn)

ωn + sgn(ωn)/2τtr
− 1

ωn

)
. (6.2.17)
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The first term on the righthand side of equation 6.2.17 would diverge logarithmically but for the

cutoff frequency εc. This term straightforwardly evaluated using the identity

lim
N→∞

N∑

n≥0

1

n+ 1/2
= lnN + ln 4γ, (6.2.18)

and recalling that the critical temperature of a superconductor with the absence of impurity

scattering, TSC0 is given by

TSC0 =
2γ

π
εc exp

(
− 1

D(εF )V

)
, (6.2.19)

where γ is Euler’s constant = 0.5772... [18], we find that

2πD(εF )V T
∑

n≥0

1

ωn
= 1 +D(εF )V ln

(
TSC0

T

)
. (6.2.20)

To evaluate the second term of the righthand side of equation 6.2.17 we note that [18]

ψ(z) = −γ −
∞∑

n=1

(
1

z + n
− 1

n

)
(6.2.21)

and [1]

ψ(1 + z) = ψ(z) +
1

z
(6.2.22)

Therefore

2πD(εF )V T
∑

n≥0

(
sgn(ωn)

ωn + sgn(ωn)/2τtr
− 1

ωn

)
= D(εF )V

[
ψ

(
1

2
+

1

4πτtrT

)
− ψ

(
1

2

)]

(6.2.23)

Equation 6.2.17 is clearly only valid at T = TSC . Substituting (6.2.23) and (6.2.20) into

(6.2.17) and setting T = TSC we arrive at the Abrikosov–Gorkov formula;

ln

(
TSC0

TSC

)
= ψ

(
1

2
+

~

4πτtrkBTSC

)
− ψ

(
1

2

)
. (6.2.24)

The Baltensperger–Sarma equation [24, 184, 103] (which we will not derive here; details

can be found in references [201, 200]),
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ln

(
TSC0

TSC

)
= ψ

(
1

2
+ i

Exc

4πkBTSC

)
− ψ

(
1

2

)
, (6.2.25)

accounts for the reduction in the critical temperature of a superconductor due to exchange

splitting but is only valid for OSP states. This would appear to complicate the analysis as this

term would have to be included for OSP states, but not for ESP states. However, this term is not

in fact relevant in the following analysis as all measurements are performed at ambient pressure

and at extremely low temperatures (T . 0.05TFM ), so the exchange splitting is constant

throughout. However, if resistivity measurements where performed over a range of pressures, the

Baltensperger–Sarma equation would be relevant (if the there is OSP) because of the variation of

Exc as a function of pressure.

6.2.2 The determination of the critical temperature of clean ZrZn2 from residual

resistivity experiments

The simplest approach to determine the critical temperature is to compare the residual

resistivity of several samples with their superconducting transition temperatures.

In Fermi liquid theory the resistivity is given by

ρ(T ) = ρ0 +AT 2. (6.2.26)

ρ0 is known as the residual resistivity. Experimentally the residual resistivity can be measured by

studying the limit of ρ as T → 0 in the normal state. The residual resistivity is straightforward to

compare to with the critical temperature as calculated from the Abrikosov–Gorkov formula

because of the Drude formula for resistivity,

ρ0 =
m∗

ne2τtr
. (6.2.27)

For Sr2RuO4, the ratio m∗/n can be found straightforwardly from either band structure

calculations or de Haas–van Alphen experiments. However, for ZrZn2 this is not so

straightforward so we treat m∗/n as a fitting parameter. (In the fit presented below the we take
m∗

ne2 = 3.4 µΩcmps.)

We are grateful to Stephen Hayden and Stephen Yates for providing us with the data to

which we constructed the fit to the Abrikosov–Gorkov–Drude form shown in figure 6.7. On the

basis of this fit we find that TC0 = 1.15 ± 0.15 K. An additional point, from Pfleiderer et al.

[166] is also shown in figure 6.7. We do not fit to this point as the resistivity does not fall to zero
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Figure 6.7: The superconducting critical temperature of ZrZn2 as a function of residual resistivity.

The data to which the fit is constructed was provided by Stephen Hayden and Stephen Yates (data

shown with error bars). Another data point, taken from Pfleiderer et al. [166] is also shown (open

circle) but was not fitted to - see the text for discussion.

in the superconducting state of this sample (see inset figure 6.3). The reason that the resistivity

does not fall completely to zero is not well understood so the validity of the data point is

questionable. However, the inclusion of this data point would only lower the clean transition

temperature to TC0 ∼ 1 K. Which is (just) within the quoted error. The quoted error is itself

possibly a little optimistic on the basis of two data points.
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6.2.3 The determination of the critical temperature of clean ZrZn2 from de Haas

van Alphen experiments

Given that we have only two ρ0, TSC data points to fit to, the validity of our fit is

questionable. We have therefore investigated the possibility of finding TC0 from another

experiment. De Haas-van Alphen provides a measurement of the quasiparticle lifetime. Yates et

al. [219] measured the quasiparticle lifetime on three sheets of the sheets of the Fermi by this

method. On each of the three sheets they reported τ ∼ 0.3 ps. On the basis of this quasiparticle

lifetime, given that the sample in question has TSC ∼ 0.6 K, the Abrikosov–Gorkov formula

gives TSC0 ∼ 14.5 K.

Thus it would appear that the values of TSC0 extrapolated from residual resistivity and

dHvA experiments are in strong disagreement. However, the extraction of the quasiparticle

lifetime from dHvA experiments is a non trivial task which involves the calculation of the Dingle

factor, RD, from the amplitude of the dHvA oscillations4. The Dingle factor is given by

RD = exp

(
lαm~

2πkBHτ

)
(6.2.28)

where l is the number of completed cyclotron orbits, α is a constant = 14.69 TK−1. For free

electrons, the introduction of electron-phonon effects (and similarly electron-magnon effects)

renormalises the quasiparticle lifetime and the Fermi velocity, vF , in the same ratio so that the

product vF τ (and hence the electrical conductivity) is unchanged. We therefore have

τ∗

τ
=
vF

v∗F
= 1 + λ, (6.2.29)

where λ is the electron-phonon (or electron-magnon) enhancement factor and an asterisk

indicates a renormalised quantity. Recalling that

m∗

m
= 1 + λ (6.2.30)

we have

m∗

τ∗
=
m

τ
. (6.2.31)

Hence the Dingle factor (for free electrons at least) is unchanged. It is therefore traditional to

calculate the unrenormalised quasiparticle lifetime from the Dingle factor. (Indeed this is the
4The following analysis summarises arguments presented by Poulsen, Randles and Springford [171].
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lifetime calculated by Yates et al. [219].) However, as m∗ enters the Drude formula we require

τ∗ and not τ . This renormalisation increases the lifetime by approximately a factor of five, the

Abrikosov–Gorkov formula then gives TSC0 = 3.1 K, in far better agreement with the resistivity

calculation.

One possible reason for the remaining difference in the two values of TSC0 is that the

renormalised quasiparticle lifetime measured in dHvA experiments is not strictly the relevant

factor in a transport experiment (e.g. resistivity). It can be shown that [3] in the Born

approximation the quasiparticle lifetime measured in the dHvA experiments is given by

1

τdHvA
=
nmkF

(2π)2

∫
|u(θ)|2dΩ, (6.2.32)

while the quasiparticle lifetime measured in transport experiments is

1

τtr
=
nmkF

(2π)2

∫
|u(θ)|2(1 − cos θ)dΩ. (6.2.33)

In both of the above equations n is the number of impurity atoms per unity volume and u(θ) is

the probability of an electron scattering through the angle θ. There is also factor of (1 − cos θ) in

the lifetime in the Abrikosov–Gorkov formula. Therefore the transport lifetime is (as stated in

section 6.2.1) the appropriate lifetime to use in the Abrikosov–Gorkov formula. However, the

factors of (1 − cos θ) in the transport and Abrikosov–Gorkov lifetimes arise for very different

physical reasons: The factor (1 − cos θ) in the transport lifetime comes about because

backscattering (that is scattering thorough ∼ 180o) is much more detrimental to transport than

small angle scattering; where as, the (1 − cos θ) factor in the Abrikosov–Gorkov formula is a

direct consequence of the symmetry of the p-wave state. On the other hand any scattering

destroys a cyclotron orbit, regardless of the direction of the scattering, and thus there is no

(1 − cos θ) factor in the dHvA lifetime.

Without a theory of normal state transport (that is without knowledge of u(θ)) we cannot

calculate the difference in this lifetimes. The two analyses give a ratio τtr

τdHvA
∼ 4. The normal

state scattering rate not would have to be extremely anisotropic to account for such a large ratio

( τtr

τdHvA
= 1 for isotropic scattering i.e. for u(θ) = u). Note that the appropriate lifetime for the

Abrikosov–Gorkov formula is τtr [118].

The remaining difference between the estimates of TSC0 obtained from residual resistivity

and dHvA is then quite plausibly accounted for by anisotropic scattering. Such a difference in the

quasiparticle lifetimes measured by transport and dHvA is by no means implausible, indeed in
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some materials very large (i.e. order of magnitude) differences in the dHvA and transport

lifetimes have been reported [89, 51].

The dHvA value of TC0 seems rather large but, more importantly, the quasiparticle lifetime

has not been measured on band 29, which contributes ∼ 50% of D(εF ). We therefore elect to use

the value of the clean critical temperature found from the residual resistivity data in the following

analysis.

6.3 The extension of our Ginzburg–Landau theory to three

dimensions

The Ginzburg–Landau analysis presented in section 5.2 can straightforwardly be extended

to three dimensions. For a cubic crystal we find that the condensation free energy in the presence

of exchange splitting is given by

FExc = (α0 + α2|Exc|2)(|Ax|2 + |Ay|2 + |Az|2)

+iα1Exc · (Ax × A∗
x + Ay × A∗

y + Az × A∗
z)

−2α2(|Exc · Ax|2 + |Exc · Ay|2 + |Exc · Az|2). (6.3.1)

Where,

α0 =
2

β

∑

iωn

∫
dk

sin2 kx

(
(εk − µ)2 + ω2

n

)

[(iωn − εk + µ)2 − |Exc|2] [(iωn + εk − µ)2 − |Exc|2]
, (6.3.2)

α1 = − 4

β

∑

iωn

∫
dk

sin2 kx(εk − µ)

[(iωn − εk + µ)2 − |Exc|2] [(iωn + εk − µ)2 − |Exc|2]
(6.3.3)

and

α2 = − 2

β

∑

iωn

∫
dk

sin2 kx

[(iωn − εk + µ)2 − |Exc|2] [(iωn + εk − µ)2 − |Exc|2]
. (6.3.4)

Hence, as in the two dimensional case, the critical temperature is determined by highest

temperature solution of

(
α0 − α2|Exc|2

)((
α0 + α2|Exc|2

)2 − α2
1|Exc|2

)
= 0. (6.3.5)
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If the microscopic variables are such that the A phase is the ground state in the absence of

exchange splitting there are two possible states in the presence of exchange splitting. For

Exc =
(
0, 0, Exc

)
these are

Ai = iAj =
(
0, 0, 1

)
(6.3.6)

and

Ai = iAj =
(
1,iκ, 0

)
. (6.3.7)

In this formalism the six states ij = xy, yz, zx, yx, zy and xz are degenerate. However, spin

orbit coupling would presumably mean that the states ij = xy or yx are preferred.

6.3.1 Comparison of our Ginzburg–Landau theory with that proposed by Walker

and Samokhin

We now compare and contrast the Ginzburg–Landau presented above with the theory

presented by Walker and Samokhin [215] (hereafter WS).

The most obvious difference between the two formalisms is that the Ginzburg–Landau

theory proposed by WS includes the ferromagnetism where as we must take the exchange

splitting as an external parameter. However, as the behaviour of both the Curie temperature and

zero temperature magnetisation as are well known as functions of pressure [53] this is not a

significant problem. Further, our assertion that both TFM and Exc are linear functions of pressure

which go smoothly to zero at PC is in agreement with the Landau analysis of WS.

We now turn our attention to the Ginzburg–Landau part of the analysis. The WS

Ginzburg–Landau free energy is

FSC = αψ∗ · ψ − i4πJM · (ψ∗ × ψ) . (6.3.8)

where ψ is a ‘three-component quantity... whose components transform under rotations like those

of a three-dimensional polar vector’ [215]. That is ψ ∝ d(k). Comparing this with equation

6.3.1 we find that WS do not include a term equivalent to the α2 terms (note that α in equation

6.3.8 is independent of M). Thus, given equation 6.3.1, we expect that the predictions of the two

theories will be significantly different.
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6.4 The gap equations for a ferromagnetic superconductor

It can be useful to write the spin-generalised BdG equations (4.3.25) in the form

Ẽ
k

= U †
k
ξ
k
U

k
. (6.4.1)

Where

Ẽ
k

=


Ek

0

0 −E−k


 =




Ek↑ 0 0 0

0 Ek↓ 0 0

0 0 −E−k↑ 0

0 0 0 −E−k↓



, (6.4.2)

U
k

=


uk

v∗−k

v
k

u∗−k


 , (6.4.3)

u
k

=


u↑↑(k) u↑↓(k)

u↓↑(k) u↓↓(k)


 , (6.4.4)

v
k

=


v↑↑(k) v↑↓(k)

v↓↑(k) v↓↓(k)


 , (6.4.5)

ξ
k

=


 ε

k
∆

k

−∆†
−k

−ε∗
k


 (6.4.6)

and

ε
k

= εkI + σ · Eex. (6.4.7)

For a singlet superconductor or a unitary triplet state

∆
k

∆†
−k

= I |∆(k)|2 (6.4.8)

where

∆(k) ≡





d0(k) for a singlet superconductor

d(k) for a unitary triplet superconductor
(6.4.9)

Recalling the self consistency condition (4.3.30) we quickly find that, in the absence of

exchange splitting,
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∆αβ(k) =
∑

k′

Uαβ(k − k′)∆αβ(k′)

2E(k′)
(1 − 2fE(k′)) (6.4.10)

where

E(k) =
√
ε2k + |∆(k)|2. (6.4.11)

for both singlet and unitary triplet superconductors.

6.4.1 Non-unitary states revisited: the definition of q(k)

For a non-unitary state

∆
k

∆†
k

= I |d(k)|2 + iσ · (d(k) × d(k)∗) (6.4.12)

and, in the absence of exchange splitting,

Eσ(k) =
√
ε2k + |d(k)|2 + σ|d(k) × d(k)∗|. (6.4.13)

where σ = ±1.

It is therefore useful to introduce the vector q(k) which is defined by

q(k) = id(k) × d(k)∗. (6.4.14)

It is clear from the arguments given in section 3.9 that q(k) is a real vector and that q(k) = 0 for

a unitary state.

6.4.2 The gap equations for non-unitary states in the absence of exchange splitting

The derivation of the gap equations for non-unitary states is far more complicated than is

the case for unitary states. The treatment given here follows the excellent review by Sigrist and

Ueda [193], whose derivation unfortunately contains an erroneous numerical factor of
√

2, which

we correct here.

In the absence of exchange splitting

ε
k

=


εk 0

0 εk


 . (6.4.15)

Hence, writing the BdG equations (6.4.1) as two simultaneous 2 × 2 matrix equations gives
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u
k

(
E

k
− εk

)
= −∆

k
v
k

(6.4.16)

v
k

(
E

k
+ εk

)
= −∆†

k
u
k
, (6.4.17)

where,

Eσ(k) =
√
ε2k + |d(k)|2 + σ|q(k)|. (6.4.18)

Eliminating v
k

from equations 6.4.16 and 6.4.17 we find that

u
k

(
E2

k
− ε2k

)
= ∆

k
∆†

k
u
k
. (6.4.19)

But, from (6.4.18)

E2
k
− ε2k = σ0|d(k)|2 + σz|q(k)| (6.4.20)

and from (6.4.12) we find that

u
k
|q(k)|σz = σ · q(k)u

k
. (6.4.21)

Sigrist and Ueda solved this via the ansatz

u
k

= a
(
|q(k)|σz + σ · q(k)

)(
σ0 + σz

)
+ b

(
|q(k)|σz − σ · q(k)

)(
σ0 − σz

)
. (6.4.22)

a and b can be chosen to be real without loss of generality.

From (6.4.17) we have

v
k

= ∆
k
u
k

[
E

k
− εk

] [
E2

k
− ε2k

]−1
. (6.4.23)

The completeness relation (equation 4.3.14) can be rewritten,

u
k
u†
k

+ v∗
k
vT
k

= I. (6.4.24)

Some rather tedious algebra leads to the simultaneous equations,

4|q(k)| (|q(k)| + qz(k))

(
a2 2Ek↑
Ek↑ + εk

+ b2
2Ek↓

Ek↓ + εk

)
= 1 (6.4.25)
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and

a2 2Ek↑
Ek↑ + εk

= b2
2Ek↓

Ek↓ + εk
, (6.4.26)

which have the solutions

a2 =
Ek↑ + εk

16Ek↑|q(k)| (|q(k)| + qz(k))
, (6.4.27)

b2 =
Ek↓ + εk

16Ek↓|q(k)| (|q(k)| + qz(k))
. (6.4.28)

Hence the Bogoliubov transformation matrices for a non-unitary gap are

u
k

=
1√

16|q(k)| (|q(k)| + qz(k))

[√
Ek↑ + εk
Ek↑

(
|q(k)|σ0 + q(k) · σ

)(
σ0 + σz

)

+

√
Ek↓εk
Ek↓

(
|q(k)|σ0 − q(k) · σ

)(
σ0 − σz

)]
, (6.4.29)

v
k

=
1√

16|q(k)| (|q(k)| + qz(k))




(|q(k)|d(k) − i (d(k) × q(k))) · σσy

(
σ0 + σz

)

√
Ek↑ (Ek↑ + εk)

+
(|q(k)|d(k) + i (d(k) × q(k))) · σσy

(
σ0 + σz

)

√
Ek↑ (Ek↑ − εk)


 , (6.4.30)

and thus the gap equations for non-unitary states are

∆αβ(k) =
∑

k′

Uαβ(k − k′)

[
1

4Ek↑

(
d(k) + i

q(k) × d(k)

|q(k)| tanh

(
βEk↑

2

))

1

4Ek↓

(
d(k) − i

q(k) × d(k)

|q(k)| tanh

(
βEk↓

2

))]
. (6.4.31)

6.4.3 The gap equations for a non-unitary state in the presence of exchange

splitting

We now give two derivations of the gap equations for ESP states in the presence of

exchanging splitting. The first derivation is a generalisation of the approach used above for the

gap equations in the absence of exchange splitting. Unfortunately we find that this approach is

not tractable in the presence of exchange splitting, but in closing one avenue, this derivation
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opens another by naturally motivating the study of ESP states (particularly in light of the

numerical results presented in the previous chapter and the Ginzburg–Landau theory presented in

section 6.3). The second derivation begins by making several assumptions, which we will see are

equivalent to those motivated by the first approach. This derivation is much more straightforward

and gives a much clearer understanding of why the gap equations have the rather familiar form

that we will discover. We recommend that the reader who only wishes to read one derivation

follows the second.

Derivation via an ansatz

The simplest way to proceed is to define our coordinate system so that Eex =
(
0, 0,−Eex

)

direction. This means that to perform practical calculations we will have to rotate the crystal ‘by

hand’ but this is a price well worth paying as it gives us

ε
k

= ε∗
k

=


εk − Eex 0

0 εk + Eex


 . (6.4.32)

We can now write the BdG equations as

u
k

(
E

k
− ε

k

)
= −∆

k
v
k
, (6.4.33)

v
k

(
E

k
+ ε

k

)
= −∆†

k
u
k
. (6.4.34)

Where we have used the fact that we are only dealing with the triplet case to note that

∆†
k

= −∆∗
−k

. Eliminating v
k

gives

u
k

(
E2

k
− ε2

k

)
= ∆

k
∆†

k
u
k

(6.4.35)

Recall that in the presence of exchange splitting the spectrum of a triplet superconductor is given

by

Eσ(k) =

√
ε2k + |Eex|2 + |d(k)|2 + σ

√
Λ(k) (6.4.36)

where

Λ(k) = |q(k)|2 + 4ε2k|Eex|2 + 4|Eex · d(k)|2 − 4εkEex · q(k). (6.4.37)



150 The ferromagnetic superconductor ZrZn2

Hence,

E2
k

=
(
ε2k + E2

ex + |d(k)|2
)
σ

0
+
√

Λ(k)σ
3
. (6.4.38)

But,

ε2
k

=
(
ε2k + E2

ex

)
σ

0
− 2εkEexσ3

. (6.4.39)

Equation 6.4.35 then becomes

u
k

(√
Λ(k) + 2εkEex

)
σ

3
= q(k) · σ u

k
(6.4.40)

This general case has thus far proved intractable. However, given the above

Ginzburg–Landau analysis, the results of chapter 5 - which indicate that an ESP pairing state is

the ground state of this model in two dimensions and that ESP phases (namely the A, A1 and A2

phases) are observed in bulk and, importantly, in three dimensions in 3He we will now study the

gap equations assuming that we have ESP states. Mathematically this is equivalent to the

assumption that d(k) ·Eex = 0. Further this assumption is entirely pragmatic for this work as the

state that we will propose below for ZrZn2 is an ESP state and given that we do not know (despite

some considerable effort) how to derive gap equations for non-unitary pairing in all spin states in

the presence of exchange splitting. Further we have found that the numerical solution of the

spin-generalised BdG equations takes an extremely long time (in the order of a month on a serial

processor) to converge (for a single point in phase (H, T ) space). (However, for the few points in

phase space for which we have found the self-consistent solution we do find an ESP state and

furthermore the same ESP we report below on the basis of the ESP gap equations.)

What follows, it must be stressed, is only valid for states in which Exc · d(k) = 0, that is

ESP states, therefore we cannot guarantee that we will find the ground state of the Hamiltonian.

If d(k) is perpendicular to Eex (i.e. if d(k) · Eex = 0 or equivalently for our choice of

Eex if d3(k) = 0) then

q(k) =
(
0, 0, q(k)

)
(6.4.41)

and



6.4 The gap equations for a ferromagnetic superconductor 151

Λ(k) =
(
q(k) − 2εkEex

)2
. (6.4.42)

Hence

(√
Λ(k) + 2εkEex

)
= q(k) (6.4.43)

and

u
k
|q(k)|σ

3
= q(k) · σ u

k
(6.4.44)

This is solved by to Sigrist and Ueda’s ansatz (equation 6.4.22). In our special case we have

u
k

= 4q(k)


a 0

0 b


 , (6.4.45)

and

v∗−k
= ∆

k
u†
k

(
E

k
− ε

k

)(
E2

k
− ε2

k

)−1
. (6.4.46)

But, as E
k

and ε
k

are diagonal and real we have

vT
−k

=
(
E2

k
− ε2

k

)−1(
E

k
− ε

k

)
u
k
∆†

k
(6.4.47)

Therefore

v∗−k
vT
−k

= ∆
k
u∗
k

(
E

k
− ε

k

)(
E2

k
− ε2

k

)−2(
E

k
− ε

k

)
u
k
∆†

k

(6.4.48)

Using the fact that d3(k) = 0 and hence ∆
k

is diagonal we arrive at
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u−k
u†−k

+ v∗−k
vT
−k

= 16q2(k)



|a|2

(
1 +

E↑(k)−
(
ε(k)−Eex

)

E↑(k)+
(
ε(k)−Eex

)
)

0

0 |b|2
(

1 +
E↓(k)−

(
ε(k+Eex

)

E↓(k)+
(
ε(k)+Eex

)
)


(6.4.49)

=


1 0

0 1


 , (6.4.50)

which is required to ensure that the Bogoliubov–Valatin transformation is unitary. Summing the

diagonals gives

16q2(k)

(
|a|2

(
1 +

E↑(k) −
(
ε(k) − Eex

)

E↑(k) +
(
ε(k) − Eex

)
)

+ |b|2
(

1 +
E↓(k) −

(
ε(k + Eex

)

E↓(k) +
(
ε(k) + Eex

)
))

= 2.

(6.4.51)

But subtracting the diagonals gives

|a|2
(

1 +
E↑(k) −

(
ε(k) − Eex

)

E↑(k) +
(
ε(k) − Eex

)
)

− |b|2
(

1 +
E↓(k) −

(
ε(k + Eex

)

E↓(k) +
(
ε(k) + Eex

)
)

= 0. (6.4.52)

Solving these simultaneously we find that

|a|2 =
E↑(k) +

(
ε(k) − Eex

)

32q(k)2E↑(k)
, (6.4.53)

|b|2 =
E↓(k) +

(
ε(k) + Eex

)

32q(k)2E↓(k)
. (6.4.54)

Therefore we have

u
k

=




√
E↑(k)+

(
ε(k)−Eex

)
2E↑(k) 0

0

√
E↓(k)+

(
ε(k)+Eex

)
2E↓(k)


 (6.4.55)

v∗−k
= ∆

k




1√
2E↑(k

(
E↑(k)+

(
ε(k)−Eex

)) 0

0 1√
2E↓(k)

(
E↓(k)+

(
ε(k)+Eex

))


 .

(6.4.56)
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Or in perhaps their simplest form;

uσσ(k) =

√
Eσ(k) +

(
ε(k) − σEex

)

2Eσ(k)
(6.4.57)

v∗σσ(k) =
−∆σσ(k)√

2Eσ(k)
(
Eσ(k) +

(
ε(k) − σEex

)) (6.4.58)

uσσ(k) = v∗σσ(k) = 0. (6.4.59)

We can rewrite the self consistency equations (4.3.30) as

∆αα(k) =
∑

k′σ

Uαα(k − k′)uασ(k′)v∗ασ(k′)(1 − 2fEk′σ
) (6.4.60)

and

∆αβ(k) = −1

2

∑

k′σ

Uαβ(k − k′)
(
uασ(−k′)v∗βσ(−k′) − v∗ασ(k′)uβσ(k′)

)
(1 − 2fEk′σ

) (6.4.61)

where α 6= β. We now arrive at the gap equations,

∆αα(k) = −
∑

k′

Uαα(k − k′)∆αα(k′)
2Eα(k′)

(1 − 2fEk′α
) (6.4.62)

and

∆αβ(k) = 0. (6.4.63)

It would of course be highly desirable to find a solution to equation 6.4.40 for

Exc · d(k) 6= 0, and this approach appears, at the present time to be the most likely way to derive

such general gap equations. The most notable non-unitary state for which Exc · d(k) 6= 0 is the

B2 phase.

It is particularly important to be able to write down the gap equations for non-unitary states

in the presence of exchange splitting as, to date, non-unitary states have only been observed in

the presence of exchange splitting. Indeed it can be argued that it is the exchange splitting which

drives the formation of non-unitary states.
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Derivation via a more direct route

Given that we were forced to derive a formalism valid for ESP states only above it is worth

repeating the derivation in a rather more straightforward manner below as deeper insight can be

gathered due to the greater simplicity of the derivation.

As we are now aware of the limitations we are prepared to accept in out theory we can

study from the very begin the special case of Exc · d(k) = 0. In this case, for

Exc =
(
0, 0,−Exc

)
, the spin triplet BdG equations are




εk − Exc 0 ∆↑↑(k) 0

0 εk + Exc 0 ∆↓↓(k)

−∆∗
↑↑(−k) 0 −ε−k + Exc 0

0 −∆∗
↓↓(−k) 0 −ε−k − Exc







u↑σ(k)

u↓σ(k)

v↑σ(k)

v↓σ(k)




= Eσ(k)




u↑σ(k)

u↓σ(k)

v↑σ(k)

v↓σ(k)



. (6.4.64)

We can now easily separate the BdG equations into a pair of BdG equations for up

electrons,


 εk − Exc ∆↑↑(k)

−∆∗
↑↑(−k) −ε−k + Exc




u↑σ(k)

v↑σ(k)


 = Eσ(k)


u↑σ(k)

v↑σ(k)


 . (6.4.65)

and a set of BdG equations for down electrons,


 εk + Exc ∆↓↓(k)

−∆∗
↓↓(−k) −ε−k − Exc




u↓σ(k)

v↓σ(k)


 = Eσ(k)


u↓σ(k)

v↓σ(k)


 . (6.4.66)

Using the self-consistency condition (6.4.60) we quickly find that the gap equations are

∆σσ(k) = −
∑

k′

Uσσ(k − k′)∆σσ(k′)
2Eσ(k′)

(1 − 2fEk′σ
). (6.4.67)

with
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Ekσ =

√
(εk − σExc)

2 + |∆σσ(k)|2 (6.4.68)

It is now clear that in the presence of exchange splitting if there is no opposite spin pairing

(i.e. if d0(k) = d3(k) = 0) then the two spin states are entirely separate systems. This means

that the two gap equations can be solved independently even in their linearised form! This is

particularly surprising as we, in general, do not expect the two gap equations to have the same

transition temperature. This means that we will be able to use the linearised gap equations to

accurately calculate the transition temperature of a second superconducting transition (e.g.

between the A1 and A2 phases.)

6.4.4 Confirmation that the two formalisms are equivalent in the special case of

equal spin pairing and no exchange splitting

As we now have two independently derived sets of gap equations (equation 6.4.31 and

equations 6.4.62 and 6.4.63) which should be identical for ESP in the limit of Exc → 0, we can

use this to check that both sets of gap equations are correct.

Clearly, for Exc = 0 the mathematical form of equation 6.4.62 is unchanged but the

spectrum of elementary excitations becomes

Ekσ =
√
ε2k + |∆σσ(k)|2 (6.4.69)

Rewriting equation 6.4.31 in this form is slightly more tricky. It is important to keep in

mind that by considering ESP states only we are not insisting that q(k) = 0 for that would be

equivalent to considering only unitary states.

However, we note that for ESP states

d(k) =
(
dx, dy, 0

)
. (6.4.70)

Therefore

q(k) = i
(
0, 0, dxd

∗
y − dyd

∗
x

)
=
(
0, 0, qz

)
. (6.4.71)

Which gives
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(
d(k) +

d(k) × q(k)

|q(k)|

)
· iσ σ

y
= 2


−dx(k) + idy(k) 0

0 0


 (6.4.72)

= 2


∆↑↑(k) 0

0 0


 (6.4.73)

and

(
d(k) − d(k) × q(k)

|q(k)|

)
· iσ σ

y
= 2


0 0

0 dx(k) + idy(k)


 (6.4.74)

= 2


0 0

0 ∆↓↓(k)


 (6.4.75)

Substituting these identities into equation 6.4.31 gives

∆
k

=
∑

k′




∆↑↑(k)
2Ek↑

(
1 − 2fEk↑

)
0

0
∆↓↓(k)
2Ek↓

(
1 − 2fEk↓

)


 . (6.4.76)

Therefore the two formalisms agree in this, the only limit in which they should. This is, of

course, confirmation of the numerical error in reference [193].

6.5 The linearised gap equation and calculation of the

superconducting critical temperature of a ferromagnetic

superconductor

As T → TSC from below, |∆
k
| → 0 and hence Eσ(k) → ε(k) + σExc. Therefore the gap

equation becomes

∆σσ(k) =
∑

k′

Uσσ(k − k′)

2
(
ε(k′) − σExc

) tanh

(
ε(k′) − σExc

2kBT

)
∆σσ(k′). (6.5.1)

Thus, near TSC the gap equation is linear. The eigenvalue problem is much easier solve

numerically than the full gap equation which, like the full self-consistent solution of the BdG

equations, converges rather slowly and is rather inaccurate near TSC . If the eigenvalue is less

than one then the full non-linear gap equation will converge to ∆
k

= 0. Hence, there is no
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superconductivity in this channel. However, if the eigenvalue is greater than one then full

non-linear gap equation will converge on a finite value of ∆
k

and hence there is

superconductivity in the channel being considered. Therefore at TSC the eigenvalue of the

linearised gap equation in one. This allows TSC to be determined very accurately. Further by

comparing the transition temperatures of various symmetries one can find which has the highest

transition temperature and hence which state occurs for T . TSC .

Clearly, we cannot, in general, use the linearised gap equation to study transitions from one

superconducting state to another as the gap equation can no longer be linearised below the first

superconducting transition. The exception to this rule, as noted above, is the transition from an

ESP state with only one type of pairing to an ESP state with both ↑↑ and ↓↓ pairing (an example

of such a transition is the transition from the A1 phase to the A2 phase), because of the complete

separation of the spin-up and spin-down subsystems in the presence of exchange splitting and the

absence of opposite spin pairing or spin flip processes.

6.5.1 A tight binding fit to the LDA DOS

Before we can solve the linearised gap equations numerically we must first determine a

band structure. Ab initio calculations have been performed by several groups, but using such

detailed calculations would unnecessarily complicate matters and tie our results strongly to

ZrZn2, therefore we choose to use the tight binding approximation once again. However, we still

require that our tight binding fit retains some of the important features of ZrZn2.

The Fermi surface of ZrZn2 [219] is far too complicated to be fit well by the tight binding

approximation. However, it is well known [214, 70] that, in the weak coupling approximation the

superconducting critical temperature is varies as

TSC ∼ exp

(
− 1

UD(εF )

)
, (6.5.2)

where D(εF ) is the density of states at the Fermi level. Therefore, as we are primarily interested

in the variation of the superconducting critical temperature with exchange splitting, the important

property of the material is the variation of the density of states with exchange splitting.

Giles Santi was kind enough to provide us with the results of his LDA band structure

calculations [219]. We fitted a one band nearest neighbour tight binding model so that the relative

DOS is correct over the range of exchange splitting found in the band structure calculations -

which are in excellent agreement with de Haas-van Alphen experiments. The density of states
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Figure 6.8: The density of states from the LDA calculations for ZrZn2 (solid line) by Giles Santi

and coworkers [219] and our tight binding fit to the LDA DOS (dashed line).

found in each calculation is shown in figures 6.8 with the relevant region of the DOS shown in

detail in figure 6.9. The tight binding parameters of the our fit are given in table 6.1

6.5.2 The numerical solution of the linearised gap equations

We solved the linearised gap equations (6.5.1) numerically. To do this we used a k-space

integration mesh of 109 points. We use such a large array for two reasons. A fine integration

mesh is required to accurately the DOS. Our method (implicitly) requires an accurate calculation

of the DOS. This is particularly important in our case as we are varying the exchange splitting

and thus we are changing the DOS, so any errors in evaluating D(ε) will lead to significant errors
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Figure 6.9: The density of states near the Fermi level from the LDA calculations for ZrZn2 by

Giles Santi and coworkers [219] (solid line) and our tight binding fit to the LDA DOS (dashed

line).

t 0.12 eV

ε 2.325t

E↑,max
xc 0.315t

E↓,max
xc 0.393t

Table 6.1: Tight binding parameters fitted to the DOS found from LDA calculations for ZrZn2.
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in our calculation of the variation of TSC with Exc.

We show the results of our numerical calculations in figure 6.10. In these calculations we

have used a simple cubic lattice. We have fitted our calculations by a cubic equation to account

for numerical noise. The scale used on the x axis is not immediately obvious and so we will give

a little explanation below. We have plotted the transition temperature for up, up pairing on the

positive Exc scale and the transition temperature for down, down paring on the negative Exc

scale. There are several good reasons for doing this.

(i) This is the behaviour of the up, up pairing state over a full range of exchange splitting as

the majority (up) and minority (down) states are reversed under the transformation Exc → −Exc.

(ii) By plotting our results in this fashion we see that the point Exc = 0 in the transition

temperature, exchange splitting curve is not a special case.

(iii) By using this choice of scale we have a larger range to fit over and thus increase the

accuracy of the fit.

Zero exchange splitting is not a special point because in both the non-linear and linearised

gap equations exchange splitting is mathematically equivalent to a chemical potential. Thus, by

plotting the graph in figure 6.10 we have also found the critical temperature of the of the A phase

as a function of the chemical potential in zero exchange splitting.

We now plot the critical temperature for both | ↑↑〉 and | ↓↓〉 pairing on the same graph

(figure 6.11). This plot shows is then the (Exc, T ) superconducting phase diagram for our model

in the absence of impurity scattering. (This, of course, assumes that no further phase transitions

occur at low temperatures.) The higher transition temperature is the transition to the A1 phase

and the second transition is a transition to the A2 phase. (Recall that we are able to calculate the

lower transition temperature, even in the linearised approximation, because the exchange splitting

makes the two spin states into separate subsystems.) In the paramagnetic state (the line Exc = 0)

the superconducting state is an A phase as the superconducting order parameter is the same for

both the up, up and down, down pairing states. (Recall that the A2 phase becomes the A phase

via a cross over, rather than a phase transition - see section 3.9.6 for details.)

Note that the superconducting critical temperature for the majority spin state is higher than

that of the minority spin state. This may seem rather intuitive but in fact this is fundamentally no

more likely than minority state having the higher critical temperature. The fact that dD(Exc)
dExc

is

positive for all Exc leads to the higher superconducting critical temperature of the majority state

(as increasing Exc increases the DOS and hence increases TSC). But the slope of D(ε) is
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Figure 6.10: The results of our numerical solution of the linearised gap equations are shown by

the points. The line is a fit to the calculated points by a cubic equation.
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Figure 6.11: The phase diagram of our model. The critical temperature is shown for both A1 and

A2 phases over a range of exchange splittings. The hatched area indictes the A phase, which is the

ground state when Exc = 0.
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determined by our tight binding fit (figure 6.8). Thus if we were to change the chemical potential

from 2.325t to, say, −2.325t one would find that dD(Exc)
dExc

< 0 for the same range of Exc and

hence that the minority spin state had the higher transition temperature. (In fact figure 6.13 would

be rotated about the axis Exc = 0 but figure 6.14 would look identical, but now the higher

transition corresponds to down, down pairing, with the lower transition marking the onset of

superconductivity in the majority spin state.

The phase diagram shown in figure 6.14 is clearly equivalent to the A1-A2 splitting of 3He

in a magnetic field. Experimental measurement of this phase transition in 3He due to Remeijer et

al. [175] are shown in figure 3.5. At first sight figures 6.14 and 3.5 look rather different, however

the are in fact almost identical, as we will now show. The dimensionless measure of the exchange

splitting for the Remijer et al. experiments is µnB
kBTF

, where TF is the Fermi temperature, while for

our calculation the dimensionless exchange splitting is given by Exc

W . The experiments of Remijer

et al. were not performed at constant pressure, which complicates the analysis somewhat,

however they conclude that

TA1
SC − TA2

SC

TA
SC

= ã

(
µnB

kBTF

)
+ b̃

(
µnB

kBTF

)2

(6.5.3)

where ã = 36.3 ± 0.91 and b̃ = 522 ± 17 in the range 0 ≤ µnB
kBTF

≤ 0.01 at an effective pressure

of 3.4 MPa i.e the splitting is, to a very good approximation linear. The equivalent exchange

splitting in our calculations is Exc = 0.01W = 0.01 eV. It can clearly be seen from figure 6.14

that our calculations give an approximately linear splitting between the A1 and A2 phase

transitions over the range of exchange splitting 0 ≤ Exc ≤ 0.01 eV. Hence our results are

consistent with the what is known about 3He. (Although, of course, we had no right to expect this

agreement as our parameters where chosen for ZrZn2 and not 3He.) Further this illustrates the

fact that ferromagnetic superconductors will provide an excellent laboratory in which to study the

splitting of the A1 and A2 phase transitions (and the non-linear splitting in particular) over a far

greater range of exchange splitting than is possible in 3He.

6.6 Disorder, resistivity and the transition temperature

As we have seen in section 6.2, in terms of their superconducting properties, even the best,

currently available, samples are not in the very clean limit. In the previous section we calculated

the transition of the clean system for a variety of exchange splittings. Knowing the transition
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Figure 6.12: The superconducting critical temperature as a function of residual resistivity for a

range of exchange splittings. The exchange splitting is, from the top down, 0.0378 eV, 0.02835

eV, 0.0189 eV, 0.0095 eV, -0.0188 eV, -0.0236 eV, -0.0354 eV, -0.0472 eV

temperature clean temperature we can calculate the transition temperature of the dirty systems

from the Abrikosov–Gorkov formulism. We show the results of such calculations in figure 6.12.

In these calculations we assume that m∗

n is independent of Exc in the absence of

experimental evidence to the contrary. The simplest way to plot these curves is to use

t = ~

4πτtrkBTSC
as a parametric variable. Hence, knowing TSC0(Exc), we calculate TSC of t and

thence ρ.
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Figure 6.13: The critical temperature of a ESP p-wave superconductor as a function of exchange

splitting (or equivalently chemical potential) in the presence of disorder. The curves correspond

(from the top down) to ρtr = 0, 0.1 µΩcm, 0.2 µΩcm, 0.3 µΩcm, 0.4 µΩcm, 0.5 µΩcm, 0.6 µΩcm,

0.7 µΩcm, 0.8 µΩcm and 0.9 µΩcm.

6.6.1 The critical temperature of a dirty ferromagnetic superconductor as a

function of exchange splitting

We now calculate the critical temperature as a function of exchange splitting for a variety

different quasiparticle lifetimes, or more physically, for different residual resistivities. In figure

6.13 we show the superconducting critical temperature as a function of exchange splitting for

both positive and negative exchange splitting, while is figure 6.14 we show the superconducting

critical temperature and the temperature of the A1-A2 transition as a function of exchange

splitting. Each figure shows plots for a range of quasiparticle lifetimes.
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Figure 6.14: The critical temperature of a ESP p-wave superconductor and the temperature of

the A1-A2 transition as a function of exchange splitting in the presence of disorder. The curves

correspond (from the top down) to ρtr = 0, 0.1 µΩcm, 0.2 µΩcm, 0.3 µΩcm, 0.4 µΩcm, 0.5 µΩcm,

0.6 µΩcm, 0.7 µΩcm, 0.8 µΩcm and 0.9 µΩcm.
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6.6.2 The critical temperature of ZrZn2 as a function of pressure in the presence

of non-magnetic impurities: comparison with experiment

To compare our results with experiment we must make contact with the ‘control

parameter’, pressure. Fortunately, in ZrZn2 this is not too difficult.

We begin by noting that experimentally the Curie temperature is, to within experimental

error, a linear function of temperature [53, 166]. This is in agreement with the predictions of

Walker and Samokhin’s Landau theory [215]. Thus we have

TFM (P ) = TFM (0)

(
1 − P

PC

)
. (6.6.1)

Next we observe that the zero temperature magnetisation is also linear in pressure and thus

proportional to TFM (as is predicted by the Stoner model), giving

M(P, T = 0) = M(0, 0)

(
1 − P

PC

)
. (6.6.2)

Finally, recall that for a Stoner ferromagnet, the magnetisation is linearly dependent on the

exchange splitting and we have

Exc(P, T = 0) =





Exc(0, 0)
(
1 − P

PC

)
P ≤ PC

0 P > PC .
(6.6.3)

We now invoke the fact that TFM � TSC which implies that

Exc(P, T = TSC) ∼ Exc(P, T = 0). (6.6.4)

Thus we can map the results of TSC(Exc) (shown in figure 6.14) onto TSC(P ) which we show in

figure 6.15.

We see that our theory is not in quantitative agreement with experiment. For the sample

studied in reference [166], which has a superconducting critical temperature of 0.3 K, our model

predicts that, for such a large scattering, pressure destroys superconductivity rather quickly,

where as Pfleiderer et al. observed superconductivity up to pressures of 13 kbar. However, our

results are qualitatively in agreement with experiment. That is, for a moderate amount of
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Figure 6.15: The critical temperature of a ESP p-wave superconductor and the temperature of

the A1-A2 transition as a function of pressure in the presence of disorder. The curves correspond

(from the top down) to ρtr = 0, 0.1 µΩcm, 0.2 µΩcm, 0.3 µΩcm, 0.4 µΩcm, 0.5 µΩcm, 0.6 µΩcm,

0.7 µΩcm, 0.8 µΩcm and 0.9 µΩcm.
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disorder, we predict a approximately linear variation in TSC with pressure, with a sudden drop (to

zero) of TSC near at PC .

Our theory also makes a number of, potentially falsifiable predictions. Firstly, we predict

that if the superconducting state of ZrZn2 near TSC is analogous to the A1 phase of 3He, that is

the symmetry of the order parameter is

d(k) ∼ (kx + iky) (1,i, 0) , (6.6.5)

where the z axis is defined such that M ‖ ẑ. We predict that if the quality of the samples is

improved, i.e. if samples can be grown with a smaller residual resistivity then TSC will increase

across the full range of pressures that have been investigated experimentally. The relative

increase in TSC is predicted to be largest at large pressures (that is pressures in the region of PC).

Increasing the purity of samples will increase the maximum pressure at which superconductivity

is observed. We predict that if the residual resistivity is less than 0.25 µΩcm then

superconductivity will be observed in the paramagnetic state. Contrary to the predictions of Fay

and Appel [70] and Santi et al. [183] we predict that the superconducting critical temperature in

the paramagnetic state will be lower than the superconducting critical temperature in the

ferromagnetic state. Further, samples with even lower residual resistivity we predict a second

superconducting transition to the A2, that is the order parameter becomes

d(k) ∼ (kx + iky) (1,iκ, 0) . (6.6.6)

Initially this transition is only predicted to be observed near the critical pressure. But, as the

purity of samples further increases the pressure required to observe the A1, A2 phase transition

decreases. In the limit of no impurity scattering the second superconducting transition occurs

even at ambient pressure with TA1−A2
TSC

= 0.0322 or TA1−A2 = 38 mK. That TA1−A2 is so small

even in the ultra-clean limit means that it is unlikely that the second transition will ever be

observed at ambient pressure. Above PC , we enter the paramagnetic state and the order

parameter crosses over to the A phase:

d(k) ∼ (kx + iky) (1, 0, 0) . (6.6.7)

One possible explanation for the lack of quantitative agreement between this theory and

experiment is that this theory does not describe the essential physics of superconducting state in

ZrZn2. But there several, less drastic conclusions that appear worthy of investigation. TSC0, one
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of the initial inputs of this theory, is very badly known. Much more data is required to accurately

determine the clean critical temperature, a large change in this would clearly have a rather drastic

effect on our quantitative predictions. Our model is based on a simple cubic crystal structure.

ZrZn2 has a C15 Laves phase cubic lattice, this will clearly have some effect on the quantitative

predictions of the model, although is unlikely to be large enough to account for the deviation

from experiment. It has been suggested that only one sheet of the Fermi surface superconducts

[215]. This would greatly effect the density of states and thus all of our predictions. If some

experimental evidence emerges to suggest a particular sheet is solely responsible for

superconductivity in ZrZn2 it would be of great interest to see how this effects the

superconducting transition temperature in this model. Finally of course performing these

calculations with the actual LDA DOS rather than a tight binding approximation to the LDA

DOS would probably alter the quantitative predictions if only slightly.

6.7 Conclusions

We have shown that a simple model in which the pairing potential is independent of

pressure can qualitatively account for the variation in the superconducting critical temperature of

ZrZn2 with pressure. This shows that, at the very least, in the real material the pairing interaction

is only very weakly dependent on pressure. We therefore conclude that the pressure dependence

of the superconducting critical temperature in ZrZn2 is due to the pressure dependence of the

exchange splitting which in turn leads to a pressure dependence in the density of states. The

superconducting critical temperature is dependent of the DOS which ensures that, in the absence

of non-magnetic impurities, TSC decreases as pressure is applied until it reaches a minimum in

the paramagnetic state. (The superconducting critical temperature in the paramagnetic state is

independent of pressure in this model.) Disorder has a very different effects on the

superconductivity in the ferromagnetic and paramagnetic states because of the different

magnitudes of the critical temperatures in the clean system. Only a very small number of

non-magnetic impurities are required to completely suppress the unconventional

superconductivity in the paramagnetic state, while in spite of its unconventional nature many

more non-magnetic impurities are required to suppress the superconductivity in the

ferromagnetic state (although in absolute terms still very moderate amounts of disorder destroy

superconductivity in the ferromagnetic state). These two effects combine to give the illusion that

the superconductivity disappears at PC . Finally we predict that the order parameter goes to zero
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on the line kx = ky = 0. As all of the sheets of the Fermi surface cross the line kx = ky = 0 this

will lead to point nodes regardless of which sheets superconduct. Thus, this model has made a

series of predictions that will, no doubt, either be confirmed or refuted as cleaner crystals become

available and more experiments are performed.

We have also shown that for a ferromagnetic superconductor with ESP the linearised gap

equations can be used to predict the temperature of a change of symmetry in the superconducting

state. This is because the exchange splitting separates the two spin states in two subsystems, this

is indicated by the fact that the spectrum of one spin state is entirely independent of the order

parameter of the other spin state. Of course one may question the level to which, in a real

material, spin flip processes invalidate this conclusion. However, as we have seen unconventional

superconductivity is strongly suppressed by impurity scattering so in any system in which this

model is valid such spin flip processes are likely to be extremely weak.

In fact a more serious concern to the validity of our conclusions is the possibility of OSP

states (particularly the B2 phase or the FFLO state for P . PC or the B phase in the

paramagnetic region) as Exc → 0. However, the relevant area of the phase diagram is rather

small and is certainly not accessible to experiment at present. Also we are unable to derive

(linearised) gap equations which deal with all possible spin states and exchange splitting

simultaneously. Until such equations are found this question will probably remain unanswered.
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Chapter 7

Conclusions

So then, what progress have I made in the last three years? We have studied a the interplay

of superconductivity and magnetism by considering a simple model which turned out to have a

rather rich behaviour. The Hubbard model was extended to include nearest neighbour interactions

and effects of the Zeeman term. We have neglected all effects due to the vector potential in this

work.

We studied this model via several methods. In chapter 4 we attacked the model with the

Hartree–Fock–Gorkov approximation and were thus able to derive the spin-generalised

Bogoliubov–de Gennes equations for our model. Solving these equations numerically we able to

show that our model reproduced well known results for s-wave superconductors. Studying the

zero temperature limit we found, somewhat surprisingly, that the superconducting order

parameter of an s-wave superconductor is independent of magnetic field strength. This is an

interesting corollary to the Clogston–Chandrasekhar limit, the derivation of which assumes this

without proof. Further we found that this surprising field independence is not confined only to

singlet pairing states, but also found in Sz = 0 triplet states. Thus we predicted that for a triplet

state with d(k) × H = 0 Clogston–Chandrasekhar limiting would occur.

In chapter 5 we studied our extended Hubbard model in two dimensions, applying our

results to the triplet superconductor Sr2RuO4 in a magnetic field. We began by deriving a

Ginzburg–Landau theory from our extended Hubbard model. The Ginzburg–Landau analysis

showed that, assuming an A phase in zero field, there are two possible states in a magnetic field.

The first is an A phase with a (vector) order parameter parallel to the magnetic field

(d(k) × H = 0), the second phase is an equal spin pairing state with a (vector) order parameter

perpendicular to the magnetic field (d(k) · H = 0) either an A, A1 or A2 state would be

173
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consistent with the conclusions of Ginzburg–Landau theory.

We then numerically solved the Bogoliubov–de Gennes equations self-consistently. This

showed that both the states predicted by Ginzburg–Landau theory are stable. (Indeed, our

Ginzburg–Landau analysis is only sufficient to show that the two states are turning points in

free-energy and not that they are minima.) The state with the order parameter perpendicular to H

was found to be the ground state. Further, this state was found to be an A2 phase. However, there

has been speculation that in strontium ruthenate spin-orbit coupling pins the order parameter to

the crystallographic c-axis. We therefore also studied the solution whose order parameter is

parallel to the magnetic field. We found that the thermodynamic properties of the two solutions

are very different, meaning that they should be straightforward to differentiate experimentally.

Overall the state with the order parameter perpendicular to the magnetic field behaves in the way

one expects of a state consisting wholly of equal spin pairs. However the state whose order

parameter is parallel to the magnetic field contains only opposite spin pairs, its behaviour in an

exchange field is therefore much more reminiscent of singlet pairing. Our prediction of a

Clogston–Chandrasekhar limit for this state was confirmed. We were also predicted that

spin-orbit coupling could lead to Freedericksz transition in strontium ruthenate.

In chapter 6 we studied our extended Hubbard model in three dimensions. These results

were interpreted in the light of recent experiments on ZrZn2. The Ginzburg–Landau theory is

readily generalised to three dimensions, the results are not substantially changed. Given this, and

given that the numerical solutions of the Bogoliubov–de Gennes equations are incredibly slow

even with the aid of high speed computational techniques, we choose to make the reasonable

assumption the ground state in ZrZn2 only contains equal spin pairs. We were then able to derive

the gap equations for equal spin pairing in a ferromagnetic superconductor. These gap equations

have several remarkable qualities. Firstly, the exchange splitting plays only the role of a chemical

potential. An alternative interpretation of this fact is that the exchange splitting only directly

effects the normal state properties. (Of course changing the normal state properties has a

dramatic effect on the superconducting state so the exchange splitting does influence the

superconducting state, actually, as we saw, for the values of exchange splitting seen in

ferromagnet the superconducting properties are drastically altered.) Secondly, the exchange

splitting completely separates the spin degrees of freedom in the absence of spin flip processes

(which are not accounted for in this theory). This means that linearised gap equations can be

used, not only to predict the global superconducting critical temperature, but uniquely, to

calculate the temperature at which a transition from one superconducting phase to another occurs
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(in our case the A1-A2 transition).

We linearised our gap equations and solved them numerically. We fitted a tight binding

model to the density of states found in band structure calculations so as to relate our results to

ZrZn2. We also estimated the superconducting transition temperature of ZrZn2, in the absence of

impurity scattering, from both residual resistivity and de Haas–van Alphen experiments. These

estimations disagreed by a factor of 2-3. We concluded that the estimate from residual resistivity

is the more reliable of the two and hence we assumed that the superconducting transition

temperature of ZrZn2 at ambient pressure and in the absence of impurity scattering is 1.15 K.

This was used to fix the Hubbard interaction, U , which was assumed to be pressure independent.

Our numerical solutions for the clean system showed that A phase superconductivity is found in

the paramagnetic state. In the ferromagnetic state an A1 is found immediately below the

superconducting critical temperature. A second phase transition occurs at lower temperature, the

state below the second phase transition is the A2 phase. We then included the pair breaking effect

of non-magnetic impurity scattering via the Abrikosov–Gorkov formula. We found only a very

small number of impurities are required to suppress the second has transition. By the time there

is enough impurity scattering to give rise to a residual resistivity of 0.25 µΩcm the second

superconducting transition in the ferromagnetic state and all superconductivity in the

paramagnetic state are completely suppressed. Assuming a linear dependence of exchange

splitting on pressure we were able to calculate the pressure, temperature, disorder phase diagram

for our model. This is in good qualitative agreement but poor quantitative agreement with

experiments performed on ZrZn2. We therefore concluded that the observed dependence of the

superconducting critical temperature of ZrZn2 on pressure is consistent with an (axial) ESP

p-wave superconductivity mediated by a pressure independent potential in the presence of

non-magnetic impurities.

The Hubbard model has provided rich pickings for theorists ever since it was first proposed

forty years ago and it looks set to continue doing so well into this century. Even in this short

work there have been many questions that we have not addressed. For example when considering

strontium ruthenate we completely neglected the α and β sheets of the Fermi surface. We were

even further from the real material when we discussed ZrZn2, not only did we approximate the

four sheets of the Fermi surface with an effective one band model, but we also assumed a simple

cubic crystal structure while in actuality ZrZn2 forms a cubic C15 Laves phase. This work could

then clearly be usefully extended by the studying many band models and possibly more realistic

models for the band structure of ZrZn2 than the Hubbard model. Also, the study of the new
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ferromagnetic superconductors would clearly be aided if the equal spin pairing gap equations for

a ferromagnetic superconductor presented in this thesis could be generalised to include all spin

states. But three years is, after all, only a short time....



Appendix A

Density of states calculations

It is often important to be able to calculate the density of states (DOS) accurately. In this

appendix we present two methods for doing this. The first, the Bessel function method, which is a

rather elegant mathematical technique that can be implemented with minimal computational

effort, but is limited to one special case. The second method we consider is almost pure

computational brute force. This computation requires an extremely fine k-space mesh, but given

the number of points involved can be executed rather quickly. Further, the DOS need only be

calculated once for any given model, thus speed is not a major concern. The density of states for

the two dimensional nearest neighbour tight binding model as calculated by both of these

methods is compared and contrasted in figure 2.7. The results from the second method are shown

throughout this thesis.

A.1 The Bessel function method

In the special case of a tight binding model with nearest neighbour hopping only there is a

particularly easy way to evaluate the DOS. In d dimensions the normal state spectrum of the

linear/square/cubic/hypercubic lattice is

εk = −2
d∑

i=1

ti cos(ki). (A.1.1)

In principle ti may be different in each direction.

Recall that the DOS, D(ε), is defined as
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D(ε) =
1

N

∑

k

δ(ε− εk) (A.1.2)

for a lattice of N sites. For the above spectrum we therefore find that

D(ε) =

∫

BZ

ddk

(2π)d

∫ ∞

−∞

dz

2π
eiz(ε+2

∑d
i=1 ti cos ki) (A.1.3)

=

∫ ∞

0

ddk

(2π)d
cos
(εz

2

) d∏

i=1

J0(tiz), (A.1.4)

where the zeroth order Bessel function of the first kind is

J0(x) =

∫ π

−π

dθ

2π
cos(x cos θ). (A.1.5)

In principle this is straightforward to calculate numerically. However, in practice this

converges rather slowly. One can easily sidestep this problem by calculating the asymptotic

expansion analytically. It is well known [1] that the ν th order Bessel function is given by

Jν(z) ∼
√

2

πz

[
cos

(
z − 1

2
νπ − π

4

)
+ O(|z| − 1)

]
(A.1.6)

So, for large V , we can write the density of states as

D(ε) =

∫ V

0

ddk

(2π)d
cos
(εz

2

) d∏

i=1

J0(tiz) +

∫ ∞

V

dz

2π
cos
(εz

2

) d∏

i=1

√
2

πtiz
cos
(
tiz −

π

4

)
. (A.1.7)

The asymptotic expansion can be evaluated exactly in the case of d = 1

∫ ∞

V

dz

2π
cos
(εz

2

)√ 2

πtiz
cos
(
tiz −

π

4

)

=
1

2

[√
2t− ε

πt
+

√
2t+ ε

πt
−
√

2t− ε

πt
S
(
V

√
2t+ ε

πt

)
−
√

2t− ε

πt
C
(
V

√
2t+ ε

πt

)

−
√

2t+ ε

πt
S
(
V

√
2t− ε

πt

)
−
√

2t+ ε

πt
C
(
V

√
2t− ε

πt

)]
. (A.1.8)

The Fresnel sine and cosine integrals are defined by

S(z) =

∫ z

0
sin
(π

2
t2
)
dt (A.1.9)

C(z) =

∫ z

0
cos
(π

2
t2
)
dt. (A.1.10)
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While in two dimensions

∫ ∞

V

dz

2π
cos
(εz

2

) 2∏

i=1

√
2

πtiz
cos
(
tiz −

π

4

)

=

∫ ∞

V

dz

4π2
√
t1t2

1

z

[
sin

((
t1 + t2 +

ε

2

)
z

)
+ sin

((
t1 + t2 −

ε

2

)
z

)

+ cos

((
t1 − t2 +

ε

2

)
z

)
+ cos

((
t1 − t2 −

ε

2

)
z

)]

=
1

8π2
√
t1t2

[
πsign

(
t1 + t2 +

ε

2

)
− πsign

(
t1 + t2 −

ε

2

)
− πsign

(
t1 − t2 +

ε

2

)

+πsign
(
t1 − t2 −

ε

2

)
+ 4 ln 4 − 4 lnV − 8 ln 2 + 2π − 2 ln (2t1 − 2t2 + ε)

+2 ln (V (2t1 + 2t2 − ε)) + 2 ln (V (2t1 − 2t2 + ε)) − 2 ln (2t1 + 2t2 − ε)

−2Si
(
V

√
t1 + t2 +

ε

2

)
+ 2Si

(
V

√
−t1 + t2 +

ε

2

)

−2Ci
(
V

√
t1 − t2 +

ε

2

)
+ +2Ci

(
V

√
t1 − t2 −

ε

2

)]
. (A.1.11)

We leave d = 3 and higher dimensions as an exercise to the reader.

The ability to calculate the DOS simply and accurately is very useful as it allows us to

rewrite any integral over k-space,

I =
∑

k

F (εk) (A.1.12)

=

∫

BZ

ddk

(2π)d
F (εk), (A.1.13)

where F (εk) is an arbitrary function, as follows:

I =
∑

ε

F (ε)

(
∑

k

δ(ε− εk)

)
(A.1.14)

=
∑

ε

F (ε)N(ε). (A.1.15)

This is particularly useful as in most of the numerical computations considered in this thesis the

vast majority of the CPU time is directed to performing the k-space integration. For example the

s-wave gap equation (4.4.10) with an on-site potential becomes
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d0 = −1

4

∑

εσ

N(ε)U
d0√

ε2 + |d0|2
tanh

(√
ε2 + |d0|2 + σµBH

2kBT

)
. (A.1.16)

In section 4.5 we solve this gap equation

A.2 Direct evaluation of the density of states

Unfortunately the Bessel function method is not easily generalised to next nearest

neighbour hopping. It is therefore useful to be able to calculate the density of states without

recourse to special cases. Rather than considering the general (d-dimensional) case, direct

evaluation of the density of states is best understood by considering examples. We will therefore

consider this method in both one and two dimensions. Higher dimensional cases are no more

complicated to evaluate.

It is clear from equation A.1.2 that evaluating the density states numerically only involves

numerically integrating over delta functions. At first sight, this does not appear particularly

difficult, however matters are complicated by the fact that we are not dealing with isolated delta

functions in general. We will therefore consider integrating an isolated delta function in one

dimension and then discuss integrating over a line of delta functions in both one and two

dimensions.

A.2.1 Isolated delta functions in one dimension

For numerical integration the important fact to recall about the Dirac delta function is that

∫ ∞

−∞
δ(x)dx = 1. (A.2.1)

Any numerical calculation the continuum must be approximated by a mesh of discreet points. We

can identify the zero(s) of f(x) to within the accuracy of the mesh by looking for the mesh

point(s) where the f(x) changes sign1. We can therefore assign a ‘delta function’ to the mesh

point closest to the zero. This must be done so that in such a way that (A.2.1) is satisfied.

Therefore the area of the triangle (shown in figure A.1) must therefore be one, hence the height

1This of course assumes that f(x) does not go to zero in without changing sign, as for example f(x) = x2 does. If

this occurs (frequently enough to be seen above the numerical noise) then we must take care to account for these zeros.

Also if the function, f(x), is rapidly oscillating then we must ensure that the mesh is fine enough to ‘catch’ all of the

zeros. However, neither of these problems are frequently encountered in DOS calculations.
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i+1i+1 i+2ii−1i−2

l/(N−1)

(N−1)/l

Figure A.1: Sketch of isolated ‘numerical delta function’ in 1D.

assigned of the to the kernel of the integral at the zero must be N−1
l where l is the range of

integration and N is the number of mesh points used for the calculation.

A.2.2 An line of delta function in one dimension

If we know consider a line of delta functions we must define the kernel of our integral so

that

∫ a+l

a
δ(0)dx = l. (A.2.2)

is satisfied. Clearly along a line of delta functions in 1D all of the mesh points will lie on ‘delta

functions’ (figure A.2) hence we are integrating over a constant kernel. Hence we have N − 1

rectangles each of a width of l
N−1 . To ensure that equation A.2.2 is satisfied the rectangles must

have height 1. We have therefore seen that, in one dimension, the kernel for an isolated delta

function is different from that for a line of delta functions. Fortunately the case of a d

dimensional surface in d dimensions implies that energy is momentum independent. This means

that we do not have to deal with the problem as it can always be transformed away.

A.2.3 An line of delta function in two dimensions

While isolated zeros of the spectrum are not impossible in two dimensions, they are rare

and the arguments given in section A.2.1 are easily generalised, so we will not discuss this case

here. The plane of zeros is also a rather trivial generalisation of the case considered in section

A.2.2 and so we will not repeat that analysis. We have now considered a surface of dimension 0

and a d-dimensional surface in a d-dimensional space. The only remaining case to be considered

is that of an n-dimensional surface in a d-dimensional space where 0 < n < d. The simplest
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i+1i+1 i+2ii−1i−2

l/(N−1)

1

Figure A.2: Sketch of a line of ‘numerical delta functions’ in 1D.

i+1i+1 i+2ii−1i−2

j −1

j

j+1

l/(N−1)

l/(N−1)

Figure A.3: Sketch of a line of ‘numerical delta functions’ in 2D.

example of that is a line of zeros in two dimensions. All other cases (for example a plane of zero

in three dimensions) are straightforward generalisations of this case.

In this case we must satisfy

∫ b+l

b
dy

∫ a+l

a
dxδ(x) = l. (A.2.3)

The geometrical situation is illustrated in figure A.3. This situation is greatly hampered by the

fact that there are many paths the a curve may take through a given mesh box. Obviously, using a

fine mesh ensures that a straight line is locally a good approximation to the path of the zeros.

Thus we find that if our function takes the value N−1
2π in any mesh point through which the line of

delta functions passes, it will reduce to A.2.3 in the limit of an infinitesimally fine mesh. (In

practice reasonable results can be obtained with mesh of ∼ 106 points per k-axis.)
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