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Issues To Be Addressed by a Mathematical Structuralism

In what precise sense is mathematics about abstract structure?
In what precise sense are the elements of a structure incomplete?
What are the essential properties of the elements of a structure?
Can there be identity/distinctness between elements of different
structures?

Is the natural number 2 the same as the number 2 of Peano
Number Theory and are these identical to the number 2 of Real
Number Theory?
Does the answer suffer from the Julius Caesar problem?

Do the elements of a mathematical structure ontologically
depend on the structure?
Do the elements of a structure have haecceities?
Is indiscernibility a problem for structuralism?
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Our Plan For Addressing the Issues

Review an axiomatic theory of abstract objects.
Show how mathematics is analyzed within the theory.
Interpret the analysis as a form of structuralism.
Revisit each issue in light of this theory, to show how the theory
addresses it.
As we tackle each issue, some technical details of the
background theory (skipped in the review) are further elaborated.
As we tackle each issue, examine how the present version of
structuralism compares with other forms of structuralism.
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The Axiomatic Theory of Abstract Objects I

Use a second-order, quantified S5 modal logic with:
2 kinds of atomic formulas:

F
n
x1 . . . xn (n ≥ 0) (x1, . . . , xn exemplify F

n)
xF

1 (‘x encodes F
1’)

Distinguished predicate ‘E!’ (‘being concrete’),
λ-expressions: [λy1 . . . yn ϕ] (ϕ no encoding formulas)
Rigid definite descriptions: ıxϕ

Ordinary (‘O!’) vs. abstract (‘A!’) objects:
O!x =df �E!x
A!x =df ¬�E!x

Identity is defined:
x=y =df [O!x & O!y &�∀F(Fx ≡ Fy)] ∨ [A!x & A!y &�∀F(xF ≡ yF)]
F=G =df �∀x(xF ≡ xG)
p=q =df [λy p]= [λy q]

β, η, and α conversion on λ-expressions, and the Russell axiom
for definite descriptions.
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The Axiomatic Theory of Abstract Objects II

From β-conversion:
[λx1 . . . xn ϕ]y1 . . . yn ≡ ϕy1,...,yn

x1,...,xn

derive Second-order Comprehension:
∃F

n�∀x1 . . .∀xn(Fn
x1 . . . xn ≡ ϕ)

∃F�∀x(Fx ≡ ϕ),
∃p�(p ≡ ϕ)

where ϕ has no free Fs (or ps) and no encoding subformulas.
Ordinary objects necessarily fail to encode properties:

O!x→ �¬∃F(xF)
Comprehension for Abstract Objects:
∃x(A!x & ∀F(xF ≡ ϕ)), where ϕ has no free xs

e.g., ∃x(A!x & ∀F(xF ≡ Fb))
Well-Defined Descriptions: ıx(A!x & ∀F(xF ≡ ϕ))
Proper Theorem Schema: ıx(A!x & ∀F(xF ≡ ϕ))G ≡ ϕG

F

e.g., ıx(A!x & ∀F(xF ≡ Fb))L ≡ Lb
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Two Kinds of Mathematics

Mathematics has an intuitive division: natural mathematics and
theoretical mathematics.
Natural mathematics: ordinary, pretheoretic claims we make
about mathematical objects.

The Triangle has 3 sides.
The number of planets is eight.
There are more individuals in the class of insects than in the class
of humans.
Lines a and b have the same direction.
Figures a and b have the same shape.

Theoretical mathematics: claims that occur in the context of
some explicit or implicit (informal) mathematical theory, e.g.,
theorems.

In ZF, the null set is an element of the unit set of the null set.
In Real Number Theory, 2 is less than or equal to π.
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Analyzing Natural Mathematical Objects

The Triangle.
ΦT =df ıx(A!x & ∀F(xF ≡ �∀y(Ty→ Fy)))

The number of Gs.
#G =df ıx(A!x & ∀F(xF ≡ F ≈E G))
Theorem: #F = #G ≡ F ≈E G (Hume’s Principle)

The extension of G.
�G =df ıx(A!x & ∀F(xF ≡ ∀y(Gy ≡ Fy))
Theorem: �F = �G ≡ ∀x(Fx ≡ Gx) (Basic Law V)

The direction of line a.
�a =df �[λx x�a]
Theorem: �a = �b ≡ a�b (Directions)

See Pelletier & Zalta 2000, Zalta 1999, Anderson & Zalta 2004.
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Analyzing Mathematical Theories and Objects

p is true in T (‘T |= p’) =df T[λy p]
i.e., treat mathematical theories as objects that encode
propositions

Importation: For each formula ϕ that is an axiom or theorem of
T, add to object theory the analytic truth T |=ϕ∗, where ϕ∗ is the
result of replacing every well-defined singular term κ in ϕ by κT .
This validates the Rule of Closure:

If T |=p1, . . . , T |=pn and p1, . . . , pn � q, then T |=q.
Reduction Axiom: Theoretically identify (well-defined)
individual κT as follows:

κT = ıx(A!x & ∀F(xF ≡ T |=FκT ))
0PNT = ıx(A!x & ∀F(xF ≡ PNT |=F0PNT))
∅ZF = ıx(A!x & ∀F(xF ≡ ZF |=F∅ZF))

Consequence: Equivalence Theorem:
κTF ≡ T |=FκT
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Analysis of Mathematical Language

By mathematical practice (ignoring mathematical relations):
�ZF ∅ ∈ {∅} �ZF [λx x ∈ {∅}]∅
�� 2 ≤ π �� [λx x ≤ π]2

By Importation, true readings of mathematical claims:
ZF |= ∅ZF ∈ {∅ZF} ZF |= [λx x ∈ {∅ZF}]∅ZF
� |= 2� ≤ π� � |= [λx x ≤ π�]2�

Consequences of the Equivalence Theorem:
∅ZFF ≡ ZF |=F∅ZF ∅ZF[λx x ∈ {∅ZF}]
2�F ≡ � |= F2� 2�[λx x ≤ π�]

Since encoding is a mode of predication, unprefixed
mathematical claims get true readings:

The null set is an element of the unit set of the null set.
2 is less than or equal to π.
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Mathematical Relations
Use typed object theory, where i is the type for individuals, and
�t1, . . . , tn� is the type of relations among entities with types
t1, . . . , tn, respectively. Use Typed Comprehension:

∃x
t(A�t�!x & ∀F

�t�(xF ≡ ϕ)), where ϕ has no free x
ts

Let R be a variable of type �i, i�, F be a variable of type ��i, i��,
and A! denote the property of being abstract (type: ��i, i��):

∃R(A!R & ∀F(RF ≡ ϕ)), where ϕ has no free Rs
Importation: For each axiom/theorem ϕ of T, add the analytic
truths of the form T |=ϕ∗, where ϕ∗ is the result of replacing every
well-defined singular term κ and well-defined predicate Π in ϕ by
κT and ΠT , respectively, thereby validating the Rule of Closure.
Reduction Axiom: Theoretically identify relation Π:

ΠT = ıR(A!R & ∀F(RF ≡ T |=FΠT ))
SPNT = ıR(A!R & ∀F(RF ≡ PNT |= FSPNT))
∈ZF = ıR(A!R & ∀F(RF ≡ ZF |= F∈ZF))

Consequence: Equivalence Theorem:
ΠTF ≡ T |= FΠT
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Issue: How Is Mathematics About Abstract Structure?

When we extend (the language of) object theory by importing
the expressions and theorems of T into object theory, T’s content
becomes objectified. We may identify:

The structure T = ıx(A!x & ∀F(xF ≡ ∃p(T |= p & F= [λy p])))
Given what’s expressed by T |= p, T is an an object that makes
true all of the theorems of T!
So structures are abstract objects.
Moreover, we may define:

x is an element of (structure) T =df T |= ∀y(y�Tx→ ∃F(Fx & ¬Fy))
R is a relation of (structure) T =df T |=∀S(S�T R→ ∃F(FR & ¬FS))

So the relations and elements of a structure are abstract.
Physical system K has the structure T if the relations of K

exemplify the properties encoded by the relations of T or if there
is an isomorphism between the relations and objects of K and T .
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Issue: Are Structural Elements and Relations Incomplete?
Answer: Yes, with respect to encoding, but not exemplification.
Let x

t range over abstract entities of type t, and F
�t� range over

properties of entities of type t, and F̄
�t� denote [λyt ¬F

�t�
y]:

x
t

is incomplete =df ∃F
�t�(¬xF & ¬xF̄)

So the slogan “Mathematical objects possess only structural
(relational) properties,” has two readings (given the ambiguity of
‘possess’): one is true and one false.
Benacerraf’s (1965) argument (from ‘numbers have no
properties other than structural ones’ to ‘the numbers aren’t
objects’) fails for structural elements that both encode and
exemplify properties.
This undermines the counterexamples in Shapiro (2006) and
Linnebo (2008) (e.g., 3 has the property of being the number of
my children, being my favorite number, being abstract, etc.). Full
retreat from incompleteness isn’t justified.
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Issue: Which Properties Are Essential To Structural Elements?

Answer: their encoded properties.
Reason: Because these are the properties by which they are
theoretically identified via the Reduction Axiom and by which
they are individuated by the definition of identity for abstract
objects; they make them the objects that they are.
Encoded mathematical properties are even more important than
properties necessarily exemplified (e.g., not being a building,
being abstract, etc.)
Theory explains the asymmetry between Socrates and {Socrates}.
Let M be modal set theory plus urelements. After importation:

M |= s∈ {s}M M |= [λz s∈z]{s}M M |= [λz z∈ {s}M]s
The middle claim implies {s}M[λz s∈z], which in turn implies
that {Socrates} essentially has Socrates as an element; but we
can’t abstract out any properties about Socrates from these
claims: they involve encoding claims.
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Issue: Can There Be Cross-structural Identity/Distinctness?

The theory yields: 2 � 2PNT � 2�.
(They encode different properties. Cf. Frege, Shapiro 2006, 128.)
The theory yields: 2 � {{∅}}ZF � {∅, {∅}}ZF.
(These encode different properties.)
No Caesar problem: 2T � Caesar, given that Caesar is ordinary.
When T and T

� have the same theorems (e.g., because T
� has a

redundant axiom), or are notational variants, we collapse them
(and their objects) prior to importation.
What can we say about the structure PNT and the ZF set ω?
Answer: There is an isomorphism between the structural
elements of PNT and the members of ωZF, just as there is an
isomorphism between the elements of ωZF and ωZFC.
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Issue: Do Elements Ontologically Depend on Their Structure?

Answer: A structure and its relations/elements ontologically
depend on each other.
Reason: The structure and its relations/elements all exist as
abstractions grounded in facts of the form T |= p.
This applies to both algebraic and non-algebraic mathematical
theories.
Our answer therefore is in conflict with Linnebo 2006: “a set
depends on its elements in a way in which the elements don’t depend
on the set” (72); “the identity of a singleton doesn’t depend on any
other objects or on the hierarchy of sets” (73); “we can give an
exhaustive account of the identity of the empty set and its singleton
without even mentioning infinite sets” (73); “no set is strongly
dependent on the structure of the entire universe of sets. For every set
can be individuated without preceeding via this structure” (79).
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A Comparison: Linnebo (2006) and the Present Theory

Linnebo relies on Fine’s notion of ontological dependence, and
Fine’s theory of essence. Our theory of essence, and explanation
of the asymmetry between s and {s}, is different.
Linnebo uses (a) abstracts for isomorphism types and (b) a
Fregean biconditional for offices. Both are problematic.
Linnebo’s asymmetry in pure set theory gets it purchase from
focusing on unit set theory: Null Set, Extensionality, and Unit
Set Axiom, i.e., ∀x∃y∀z(z ∈ y ≡ z = x). If you restrict your
attention to unit set theory, no reference to large cardinals, for
example, is made when individuating unit sets.
But the individuation of any set in unit set theory goes by way of
Extensionality, which quantifies over every set. Thus, the
individuation of both ∅ and {∅} (or indeed, of any unit set) is
defined by the whole structure of unit set theory.
Similarly, in full ZF, the individuation of both ∅ and {∅} (or
indeed, any set) quantifies the whole structure of ZF-sets.
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Issue: Do the Elements of a Structure Have Haecceities?

Answer: No.
Reason: Identity (simpliciter) is defined in terms of encoding
formulas. Neither ‘[λxy x=y]’ nor ‘[λx x=a]’ are well-defined.
Background: abstract objects can be modeled by sets
of properties. But you can’t, for each distinct set b of properties,
have a distinct property [λxx=b] (violation of Cantor’s Theorem).
You can define =E as [λxy ∀F(Fx ≡ Fy)], and this is well-defined
and denotes a relation (by Comprehension), but it is
well-behaved only with respect to ordinary objects.
The following is a theorem of object theory (a, b are abstract
objects): ∀R∃a, b(a�b & [λx Rxa]= [λx Rxb])
By letting R be =E, we get: ∃a, b(a�b & ∀F(Fa ≡ Fb))
So there are distinct abstract objects (i.e., they encode different
properties) that are indiscernible from the point of view of
exemplification. (Picture of Aczel models.)
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Issue: Does Indiscernibility Pose a Problem for Structuralism?

Answer: No. Consider dense, linear orderings, no endpoints:
Transitive: ∀x, y, z(x < y & y < z→ x < z) Irreflexive: ∀x(x ≮ x)
Connected: ∀x, y(x � y→ (x < y ∨ y < x)) Dense: ∀x, y∃z(x < z < y)
No Endpoints: ∀x∃y∃z(z < x < y)

Aren’t all the elements of this structure (‘D’) indiscernible?
Answer: No. Reason: There are no elements of D. D is defined
solely by general properties of the ordering relation <D, which
encodes such properties of relations as: [λR ∀x¬xRx],
[λR ∀x, y, z(xRy & yRz→ xRz)], etc.
Analogy: A novel asserts, “General X advanced upon Moscow
with an army of 100,000 men”. There aren’t 100,002 characters,
but only 3 (General X, Moscow, and the army of 100,000 men).
Distinguish the model-theoretic notion ‘object of theory T’ (i.e.,
a value of a bound variable) and the object-theoretic notion
‘element of structure T’. We can’t appeal to the former in a
philosophy of mathematics, since the former assumes the very
mathematical language we’re trying to analyze.
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Another Example: The Case of i and −i

To get C, we take the axioms for� and add the following:
i
2 = −1

(Strictly speaking, i
2 =C −1.)

Objection: The structural elements i and −i are collapsed in (our)
structuralism.
Reason: Any formula ϕ(x) with only x free in the language of
complex analysis that holds of i also holds of −i, and vice versa.
Thus, i and −i are indiscernible and after importing C we have
C |=Fi ≡ C |=F−i. One might try to argue, by the Equivalence
Theorem, that iF ≡ C |=Fi and −iF ≡ C |=F−i. It would then
follow that iF ≡ −iF. Therefore, i = −i, by the definition of
identity for abstract objects.
Response: This argument is blocked because i and −i are not
elements of the structure C.
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Formal Solution

Our procedure: import ϕ of T into object theory by adding
T |= ϕ∗, where ϕ∗ is the result of replacing all the well-defined
singular terms κ in ϕ by κT .
x is an element of (structure) C =df C |= ∀y(y�Cx→ ∃F(Fx & ¬Fy))
By this definition, i and −i aren’t elements of C.
Our procedure for interpreting the language of C: before

importation, replace every theorem of the form ϕ(. . . i . . .), by a
theorem of the form: ∃x(x2 + 1 = 0 & ϕ(. . . x . . .)), and then
import the result.
Under this analysis, i and −i disappear and we are left with
structural properties of complex addition and complex
multiplication. E.g., for complex addition +C, for each theorem
∃x(x2 + 1 = 0 & ϕ(. . . x . . .)), we can abstract out properties
encoded by +C of the form [λR ∃x(x2

R1 = 0 & ϕ(. . . x . . .))].
Similar techniques can be used for complex multiplication ×C.
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Elements and Symmetries

What gives a mathematical structure its structure? It is the
relations of the theory. Without relations, there’s no structure.
An element of a structure must be uniquely characterizable in
terms of the relations of the structure—it must be discernible.
Indiscernibles arise from symmetries (non-trivial automorphisms)
of the structure. Mathematicians working with a structure
find it useful to give separate names to indiscernibles. But
these names don’t denote elements of the structure. After all, the
names are arbitrary and there is nothing (i.e., no property) within
the theory that distinguishes the indiscernibles from each other.
The mathematician’s use of ‘i’ and ‘−i’ in C is different than
their use of ‘1C’ and ‘−1C’. The naming of 1 and −1 is not
arbitrary — you can’t permute 1C and −1C and retain the same
structure. So it makes sense to say that ‘i’ and ‘−i’ do not denote
objects the way that ‘1C’ and ‘−1C’ do.
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