Browse/search for people

Professor Jeremy Henley

Neurotransmitter receptor trafficking in plasticity and disease

Understanding the processes that dictate the distribution, maintenance and dynamics of neurotransmitter receptors is of fundamental importance to the molecular basis of fast excitatory transmission, synaptic plasticity and brain function.

The Henley lab is interested in the mechanisms by which neurotransmitter receptors are targeted to, retained at and removed from synapses under normal, stimulated and disease conditions. Receptors share common biosynthetic and endocytic pathways but important specific differences allow selective regulation.

Increased understanding of the mechanisms of these processes will give important insights into synapse formation, stabilisation and plasticity and thus into the cellular mechanisms underlying learning and memory and some neurodegenerative diseases.

In particular we focus on the roles of posttranslational modifications, such as SUMOylation, and protein-protein interactions at AMPA and kainate receptors.

To address these questions we use a wide range of molecular, biochemical, cell biology and imaging techniques including the use of viral transduction and fluorophore protein tagging technology to visualise the dynamics of receptor movement in living neurones in real time.

Research keywords

  • Glutamate receptor
  • GABA
  • NSF
  • GluR2
  • Syntenin
  • GFP
  • AMPA receptor
  • PICK1
  • SUMOylation
  • SUMO