Skip to main content

Unit information: Communication Systems 3 in 2016/17

Please note: you are viewing unit and programme information for a past academic year. Please see the current academic year for up to date information.

Unit name Communication Systems 3
Unit code EENG32000
Credit points 10
Level of study H/6
Teaching block(s) Teaching Block 1 (weeks 1 - 12)
Unit director Professor. Doufexi
Open unit status Not open
Pre-requisites

EENG22000

Co-requisites

None

School/department Department of Electrical & Electronic Engineering
Faculty Faculty of Engineering

Description

The aim is to provide an insight into the choice of access techniques employed in future generation wireless networks. Analytical tools for describing information transfer and uncertainty are discussed and applied to practical data and communication systems. The key parameters that govern transmission power and bandwidth of a communication network are introduced. The unit examines both analogue and digital modulation schemes, and coherent and non-coherent detection techniques.

Intended learning outcomes

Having completed this unit, students will be able to:

  1. Explain the concepts and results of information theory, including information, uncertainly, entropy and information capacity
  2. Describe a Noise-free discrete communications channel and optimal coding
  3. Calculate the rate of communication over a noisy discrete communications channel
  4. Calculate the performance of both analogue and digital modulation schemes
  5. Explain Quality of Service
  6. Explain the concept of noise in AM and FM systems
  7. Outline Design goals for digital modulation techniques
  8. Explain correlation and matched filter detection of data; error probability of coherent reception techniques; error probability of M-ary and orthogonal systems
  9. Evaluate performance of DS-CDMA

Teaching details

Lectures and Matlab exercises

Assessment Details

Matlab assignment 10% (ILOs 1, 2)

Exam, 2 hours, 90% (All ILOs)

Reading and References

  • Information Theory
  • Jones, D.S., Elementary Information Theory, Clarendon Press, 1979, ISBN:0 1985 4375
  • MacKay, David J. C.: Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003.
  • Shannon, C.E. and W. Weaver, The Mathematical Theory of Communication, University of Illinois Press, 1963, ISBN:0 252 72548 4 (Q360 SHA)
  • Performance of Communications Systems
  • Haykin, S., Communications Systems, 4th edition, J. Wiley, 2001, ISBN:0 4713 05847 (TK 5101 HAY)
  • Proakis, J., Digital Communications, 4th Edition, McGraw-Hill, 2000, ISBN:0071181830.

Feedback