Skip to main content

Unit information: Calculus of Variations in 2016/17

Please note: you are viewing unit and programme information for a past academic year. Please see the current academic year for up to date information.

Unit name Calculus of Variations
Unit code MATH30005
Credit points 10
Level of study H/6
Teaching block(s) Teaching Block 2D (weeks 19 - 24)
Unit director Dr. Slastikov
Open unit status Not open
Pre-requisites

Calculus 2, ODE 2

Co-requisites

None

School/department School of Mathematics
Faculty Faculty of Science

Description

Unit aims

To introduce students to calculus of variations and use it to solve basic problems arising in physics, mathematics and materials science.

General Description of the Unit

Calculus of Variations is an important branch of optimization that deals with finding extrema of the functionals in certain functional spaces. It has deep relation with various fields in natural sciences, including differential geometry, ordinary and partial differential equations, materials science, mathematical biology, etc. It is one of the oldest and yet one of the most used tools for investigation of the problems involving free energy. The aim of this course is to present the basics of the calculus of variations, including 1D theory and its application to various problems arising in natural sciences.

Additional unit information can be found at http://www.maths.bristol.ac.uk/study/undergrad/current_units/index.html

Intended learning outcomes

Learning Objectives

After taking this unit, students will:

  1. Understand the basics of calculus of variations.
  2. Will be able to analyse and solve various variational problems arising in physics.

Transferable Skills

  • Increased understanding of the relationship between mathematics and the problems coming from the physical systems.
  • Development of problem-solving and analytical skills.

Teaching details

15 lectures with 4 homeworks

Assessment Details

100% Examination.

Raw scores on the examinations will be determined according to the marking scheme written on the examination paper. The marking scheme, indicating the maximum score per question, is a guide to the relative weighting of the questions. Raw scores are moderated as described in the Undergraduate Handbook.

Reading and References

Reading and references are available at http://www.maths.bristol.ac.uk/study/undergrad/current_units/index.html

Feedback