Skip to main content

Unit information: Power Electronic Systems in 2019/20

Please note: Due to alternative arrangements for teaching and assessment in place from 18 March 2020 to mitigate against the restrictions in place due to COVID-19, information shown for 2019/20 may not always be accurate.

Please note: you are viewing unit and programme information for a past academic year. Please see the current academic year for up to date information.

Unit name Power Electronic Systems
Unit code EENGM7011
Credit points 10
Level of study M/7
Teaching block(s) Teaching Block 1 (weeks 1 - 12)
Unit director Professor. Stark
Open unit status Not open
Pre-requisites

EENG37000.

Co-requisites

None.

School/department School of Electrical, Electronic and Mechanical Engineering
Faculty Faculty of Engineering

Description including Unit Aims

This is a unit on power electronics, that is built up from short bursts of theory followed by longer in-class activities involving pen-and-paper analysis and hands-on simulation. These activities put previous learning (devices, electronics, control, power systems) into context, bring in new concepts, and clarify the different levels of abstraction used in power electronic design. The course is application oriented, using renewable energy generation, grid-tie inverters, and electric vehicles as prime examples. The course activities are chosen to help students assign design tasks to the right level of abstraction, and use suitable analysis methods and simulation tools for each level.


The subject matter includes power semiconductor device operation, and the breaking down of complex 3-phase inverters into more manageable fundamental converter topologies. Students derive their operating signals, and study their integration into larger systems. Power quality, network stability, influence of parasitics and layout, and energy efficiency are topics throughout.

Intended Learning Outcomes

Having completed this unit, students will be able to:

  1. Recommend various levels of abstraction for the design process, from analysing simple circuits with real switching, through more complex topologies where switches are considered ideal, to system integration, where converters are considered ideal (non-switching);
  2. Estimate storage and passive component values in converters and power management systems;
  3. Analyse switching circuits that are based on 3 fundamental power electronic building blocks, and derive quantitative waveforms;
  4. Select switching devices and circuits based on minimal application data;
  5. Compute certain aspects of output voltage spectra for power electronic circuits, and debate the benefits of various topologies and switching methods in terms of output harmonics;
  6. Determine circuit waveforms in 3-phase inverters as a function of various load and fault conditions;
  7. Analyse grid-tied systems using phasor diagrams;
  8. Compute control parameters as a function of network power requirements (active and reactive), and analyse control requirements;
  9. Select and critically debate system integration topologies for different applications, and contrast these power electronic circuits by their operation and control requirements;
  10. Design complex converters and analyse their operation through simulation using Matlab and Simulink.

Teaching Information

Interactive lectures with in-class hands-on examples or simulation for all learning outcomes. Handouts contain all example settings, and time is provided to complete all examples in class. Solutions are provided in class, and online after the classes. Discussion and debate is encouraged. The activities can be carried out at your own pace, with or without help from the instructor.

Coursework allows students to generate the results presented in lectures, model most circuits presented, and is to be carried out during the course. A laboratory session is timetabled to provide tips and individual feedback on the coursework.

This coursework involves around 10h work outside of class, and the deadline is Thursday lunchtime of Week 6.

Assessment Information

Name: Terminal Exam

Exam, 2 hours (100%) (All ILOs)

Reading and References

Mohan, N., Undeland, T., & Robbins, W., Power Electronics: Converters, Application and Design, John Wiley & Sons, ISBN:0471226939

Feedback