Skip to main content

Unit information: Sedimentology in 2020/21

Unit name Sedimentology
Unit code EASC20007
Credit points 10
Level of study I/5
Teaching block(s) Teaching Block 2D (weeks 19 - 24)
Unit director Dr. Phillips
Open unit status Not open
Pre-requisites

Mandatory Year 1 units of an Environmental Geoscience, Geology, Geophysics or Palaeontology and Evolution programme at Bristol.

Co-requisites

n/a

School/department School of Earth Sciences
Faculty Faculty of Science

Description

The unit builds and expands upon the Level I Dynamic Surface and Surface Materials sections in EASC10001 Geology 1, taking a process-based approach to sedimentology. The study and interpretation of sedimentary sequences is fundamental to many other branches of Earth Science, and to our understanding of the history of the Earth.

This unit will develop an understanding of the processes by which sedimentary particles are transported and deposited, how these deposits are stacked to form sedimentary sequences, and what transformations occur after deposition to form sedimentary rocks. We will investigate many of the processes occurring at the surface of the planet as a result of the interaction of rocks and loose sediment with water and air, and will examine the way in which relative sea-level, climate and tectonics control the accumulation of sedimentary sequences. The chemical and physical processes by which loose sediment is turned into rock and rock properties are altered during burial, collectively termed diagenesis, are explored. The subject areas covered will take you from eroding mountain belts, down rivers, via estuaries and deltas to the deep oceans, through arid deserts and tropical seas.

By building on your understanding of modern environments, you will be able to unfold the evolution of sedimentary sequences and hence the history of sedimentary basins. The difficulties and uncertainties involved in such interpretations will become apparent as the course proceeds.

Intended learning outcomes

On successful completion of the unit you will be able to:

  • characterise the motion of a fluid in terms of its physical properties
  • apply the principles of mechanics to determine the balance of forces that control the motion of fluids or solid particles
  • determine the rate of particle sedimentation in a fluid in a variety of flow situations
  • determine the rate of particle transport under a variety of flow situations
  • use the principles of fluid motion to interpret bedforms and sedimentary sequences
  • integrate an understanding of how changes in relative sea level, climate, and tectonic setting control the stratigraphic record.
  • apply the concept of facies models to the interpretation of ancient sedimentary sequences.
  • understand the key hydrological and geochemical processes which determine diagenesis, and their impact on mineralogy, porosity and permeability
  • infer the diagenetic history of any sedimentary rock.

Teaching details

The unit will be taught through a combination of

  • asynchronous online materials and, if subsequently possible, synchronous face-to-face lectures
  • synchronous office hours
  • asynchronous directed individual formative activities and exercises
  • guided, structured reading
  • practical work in the laboratory
  • fieldwork

Students who either begin or continue their studies in an online mode may be required to complete practical or field work, or alternative activities in person, either during the academic year 2020/21 or subsequently, in order to meet the intended learning outcomes for the unit, prepare them for subsequent units or to satisfy accreditation requirements.

Assessment Details

Formative assessment

Practical work is not assessed, and verbal feedback will be given during or after the practical class. Written feedback on each practical exercise will be given via Blackboard after each practical class.

Summative assessment

  • Examination 100%

There will be a three-hour examination drawing from the breadth of taught material.

Reading and References

Recommended:

  • Leeder, M.R. (1999) Sedimentology and Sedimentary Basins - From Turbulence to Tectonics (Blackwell Science);

Further Reading

  • Allen, J.R.L., (2001) Principles of Physical Sedimentology (Blackburn Press). This is updated version of 1st Edition 1985 George Allen and Unwin, which was reprinted with corrections 1992 (Chapman & Hall). (Useful for physical aspects).
  • Leeder, M.R. (1982) Sedimentology - Process and Product (George Unwin and Allen). (Useful for deposits and processes).

Feedback