# Unit information: Complex Networks in 2018/19

Please note: you are viewing unit and programme information for a past academic year. Please see the current academic year for up to date information.

Unit name Complex Networks MATH36201 20 H/6 Teaching Block 1 (weeks 1 - 12) Dr. Ayalvadi Ganesh Not open MATH11300 Probability 1 (or equivalent) and MATH 11005 Linear Algebra & Geometry (or equivalent). MATH 21400 (Applied Probability 2) is strongly recommended. none School of Mathematics Faculty of Science

## Description

Unit aims
Understand how to mathematically model complex networks. Learn to analyse stochastic processes on networks.

Unit description
This unit will teach ways of modelling and working with large complex networks such as the Internet and social networks. The topics covered will be:

• Probability background: Continuous time Markov chains and Poisson processes
• Spread of information and epidemics on networks
• Consensus formation on networks
• Random walks on networks and introduction to spectral graph theory
• Random graph models and properties

Relation to other units
The unit extends Markov chain models seen in Probability 2 to continuous time, and applies them to the study of random processes on networks. Information Theory, Complex Networks, Financial Mathematics, and Queueing Networks, all involve the application of probability theory to problems arising in various fields.

Probability 2 is a pre-requisite for this course. Students from other departments who have not taken it should discuss the suitability of this course with the unit organiser before registering for it.

## Intended learning outcomes

Learning Objectives

• Learn to model a variety of stochastic processes on graphs, including random walks and the spread of information and epidemics
• Learn to analyse these processes to obtain bounds and approximations for quantities of interest
• Learn about the relationship of graph spectra to various properties of the graph

## Teaching details

Lectures and problem sheets, from which work will be set and marked, with outline solutions handed out a fortnight later.

## Assessment Details

100% Examination

Raw scores on the examinations will be determined according to the marking scheme written on the examination paper. The marking scheme, indicating the maximum score per question, is a guide to the relative weighting of the questions. Raw scores are moderated as described in the Undergraduate Handbook.