Skip to main content

Unit information: Quantum Platforms in 2018/19

Please note: you are viewing unit and programme information for a past academic year. Please see the current academic year for up to date information.

Unit name Quantum Platforms
Unit code PHYSM0020
Credit points 15
Level of study M/7
Teaching block(s) Teaching Block 4 (weeks 1-24)
Unit director Professor. Thompson
Open unit status Not open
Pre-requisites

None

Co-requisites

None

School/department School of Physics
Faculty Faculty of Science

Description

There are many technologies exploring the possibilities of coherent control of quantum systems and its

application to quantum information science. Each platform has its own strengths and weaknesses, and

there is currently no clear leader. At the same time, each platform has something to teach us about

quantum engineering, and in order to best understand the subtleties of the field and identify opportunities

for progress a quantum engineer needs detailed knowledge of them all.

The course will consist of taught modules that can include lectures from experts, literature reviews by

students, and structured discussion/debate about a platform’s suitability. Modules will be drawn from: ion

trapping, cold atoms, cavity QED, superconductors, solid state quantum dots, continuous variable quantum

optical implementations, nuclear magnetic resonance, nanomechanical devices.

Intended learning outcomes

Upon completion of the unit the student should:

- Be able to explain how each platform satisfies the fundamentals of quantum information processing. - Be able to explain the strengths and weaknesses of each platform. - Be able to identify the main players, both experimental and theoretical, in each platform. - Be able to explain the similarities across quantum information platforms, as well as key differences. - Be able to speculate intelligently on a platform’s future.

Transferrable skills:

- Critical assessment of technologies. - Formulating and defending one’s scientific opinion amongst others. - Summarising and communicating technical material at the level of current research.

Teaching details

Teaching consists of a balance of lectures, self-directed learning, and group activities. Contact Hours Per Week 2-6, depending on scheduling of module activities. Student Input approximately 30 hours of contact time with module instructors and group activity, and approximately 120 hours of private study, preparation and assignment work.

Assessment Details

50% of the summative assessment will be an approximately 45 minute presentation on a platform, which will be peer-assessed by the cohort. The other 50% will be a written extended abstract of approximately 1000 words assessed by the instructor.

Peer-assessed marks will be moderated and approved by the unit director

Reading and References

Texts, reviews and research articles appropriate to each module, at the instructor’s discretion.

Feedback