Skip to main content

# Unit information: Discrete Mathematics in 2019/20

Please note: Due to alternative arrangements for teaching and assessment in place from 18 March 2020 to mitigate against the restrictions in place due to COVID-19, information shown for 2019/20 may not always be accurate.

Please note: you are viewing unit and programme information for a past academic year. Please see the current academic year for up to date information.

Unit name Discrete Mathematics EMAT10704 20 C/4 Teaching Block 4 (weeks 1-24) Professor. Lawry Not open A-level mathematics or equivalent. None Department of Engineering Mathematics Faculty of Engineering

## Description

Description Discrete mathematics is the mathematical study of discrete objects, that is, sets of distinct elements. It is used whenever objects are counted, or relationships between finite sets of objects are studied, or when processes involving a finite number of steps are analysed. Discrete mathematics underlies almost all present day information processing systems, and a thorough knowledge of the subject is necessary to appreciate the capabilities and limitations of computers.

EMAT10704 will cover foundation level material in discrete mathematics including: number systems and arithmetic, logic and proof, sets, relations and functions. It will then move on to provide a background into more advanced topics in discrete mathematics, including graph theory, and the link between continuous and discrete mathematics.

Aims The unit aims to provide a foundational level background in discrete mathematics.

## Intended learning outcomes

The unit will provide students with:

1. a basic understanding of topics in discrete mathematics, and
2. their application to real-world problems

## Teaching details

Lectures & examples classes

## Assessment Details

80% summer 3 hour written exam (all learning outcomes)

10% each on two 30 minute class tests (all learning outcomes).

## Reading and References

• Introductory Logic and Sets for Computer Science

Nimal Nissanke (ISBN:0-201-17957-1)

Main recommendation:

• Graphs and Applications: An Introductory Approach

J M Aldous and R J Wilson Springer, 2000, ISBN:185233259X

Supplementary recommendation:

• Introduction to Graph Theory (4th Edition)

R J Wilson Prentice Hall, 1996, ISBN:0582249937