Skip to main content

Unit information: Igneous Petrology in 2022/23

Please note: It is possible that the information shown for future academic years may change due to developments in the relevant academic field. Optional unit availability varies depending on both staffing, student choice and timetabling constraints.

Unit name Igneous Petrology
Unit code EASC30057
Credit points 10
Level of study H/6
Teaching block(s) Teaching Block 2D (weeks 19 - 24)
Unit director Dr. Lord
Open unit status Not open

All mandatory units in first and second year Geology programmes.



School/department School of Earth Sciences
Faculty Faculty of Science


This unit builds on knowledge and skills learned in the Mineralogy and Petrology unit in year 2 of the Geology programmes (EASC20035). The following topics will be explored:

  • Melting of crust and mantle rocks
  • Crystallisation of magmas, including kinetics
  • Volatile solubility in silicate melts
  • Application of ternary phase diagrams to igneous petrology
  • Methods of constraining magmatic variables, such as pressure, temperature, redox state
  • Case studies of selected volcanoes to illustrate crustal magmatic processes
  • Links between petrology and volcano monitoring
  • Application of thermodynamics to igneous processes
  • Experimental petrology
  • Microbeam analysis

Intended learning outcomes

On successful completion of the unit, you will be able to:

  • Understand melting and crystallisation processes with the Earth’s crust and mantle
  • Understand the controls on trace element distribution within the Earth
  • Understand the controls of volcanic gas chemistry
  • Determine magmatic intensive parameters using mineral and glass chemistry
  • Be aware of the different types of experimental and analytical equipment used in petrology
  • Link magmatic processes to the volcanic and plutonic rocks they produce
  • Use complex phase diagrams to interpret igneous rocks and their textures
  • Use thermodynamic data to describe igneous processes
  • Understand the links between magmatism and mineralisation
  • Describe the eruptive history of several case study volcanoes
  • Understand the importance of heat in driving crustal magmatism

Teaching details

The unit will be taught through a combination of

  • asynchronous online materials and, if subsequently possible, synchronous face-to-face lectures
  • synchronous office hours
  • asynchronous directed individual formative activities and exercises
  • guided, structured reading
  • practical work in the laboratory

Students who either begin or continue their studies in an online mode may be required to complete laboratory work, or alternative activities, in person, either during the academic year 2020/21 or subsequently, in order to meet the intended learning outcomes for the unit, prepare them for subsequent units or to satisfy accreditation requirements.

Assessment Details

End-of-unit timed open-book examination (100%)


If this unit has a Resource List, you will normally find a link to it in the Blackboard area for the unit. Sometimes there will be a separate link for each weekly topic.

If you are unable to access a list through Blackboard, you can also find it via the Resource Lists homepage. Search for the list by the unit name or code (e.g. EASC30057).