Unit name | Engineering Mathematics 1 |
---|---|

Unit code | EMAT10100 |

Credit points | 20 |

Level of study | C/4 |

Teaching block(s) |
Teaching Block 4 (weeks 1-24) |

Unit director | Professor. Champneys |

Open unit status | Not open |

Units you must take before you take this one (pre-requisite units) |
A-level common core in mathematics, or equivalent |

Units you must take alongside this one (co-requisite units) |
None |

Units you may not take alongside this one |
None |

School/department | School of Engineering Mathematics and Technology |

Faculty | Faculty of Engineering |

Description There are five main sections: Algebra (vectors, complex numbers, matrices as transformations, solving equations using matrices, eigenvalues and eigenvectors); Analysis (Sequences, series, functions, curve sketching, introduction to fourier series, introduction to numerical analysis); Calculus (differentiation and integration of functions of one variable, taylor series, numerical root finding, introduction to partial differentiation); Differential Equations (concepts, separation of variables, linear first and second-order equations, systems, numerical solutions); and Probability (basic concepts, events, random variables, empirical discrete and continuous distributions).

Aims The principal aim of this faculty-wide unit is to bring students entering the Faculty of Engineering up to a common standard in mathematics. The unit contains the well recognised elements of classical engineering mathematics which universally underpin the formation of the professional engineer.

- To gain familiarity with the basic mathematics needed for engineering degree programmes.
- To be able to manipulate and solve mathematical problems involving algebraic and analytic concepts such as matrices, vectors, complex numbers, differentials, integrals, and sequences.
- To be able to link such algebraic and analytical concepts to geometric concepts in the form of graphs.
- To gain a basic understanding of how data is represented and manipulated in computations deterministically and using the laws of probability applied to a single random variable.
- To understand the relevance of these concepts to representation and solution of engineering problems.

Teaching will be delivered through a combination of synchronous and asynchronous sessions, including lectures, supported by live online sessions, problem sheets and self-directed exercises

January Exam: 20% (Learning Outcomes 1-3, 5)

Summer Exam: 80% (Learning Outcomes 1-5)

If this unit has a Resource List, you will normally find a link to it in the Blackboard area for the unit. Sometimes there will be a separate link for each weekly topic.

If you are unable to access a list through Blackboard, you can also find it via the Resource Lists homepage. Search for the list by the unit name or code (e.g. EMAT10100).

**How much time the unit requires**

Each credit equates to 10 hours of total student input. For example a 20 credit unit will take you 200 hours
of study to complete. Your total learning time is made up of contact time, directed learning tasks,
independent learning and assessment activity.

See the University Workload statement relating to this unit for more information.

**Assessment**

The Board of Examiners will consider all cases where students have failed or not completed the assessments required for credit.
The Board considers each student's outcomes across all the units which contribute to each year's programme of study. For appropriate assessments, if you have self-certificated your absence, you will normally be required to complete it the next time it runs (for assessments at the end of TB1 and TB2 this is usually in the next re-assessment period).

The Board of Examiners will take into account any exceptional circumstances and operates
within the Regulations and Code of Practice for Taught Programmes.